Theoretical and Experimental Probability

Theoretical probability of an event.

In the game of Scrabble[®], players use tiles bearing the letters of the alphabet to form words. Of the 100 tiles used in a Scrabble game, 12 have the letter *E* on them. What is the probability of drawing an *E* from a bag of 100 Scrabble tiles? In this case, pulling an *E* from the bag is called a *favorable outcome*. A **favorable outcome** is an outcome that you are looking for when you conduct an experiment.

To find the probability of drawing an *E*, you can draw tiles from a bag and record your results, or you can find the *theoretical probability*. **Theoretical probability** is used to estimate the probability of an event when all the outcomes are equally likely.

THEORETICAL PROBABILITY

probability = <u>number of favorable outcomes</u> total number of possible outcomes

If each possible outcome of an experiment is equally likely, then the experiment is said to be <u>fair</u>. Experiments involving number cubes and coins are usually assumed to be fair.

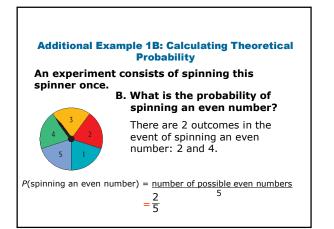
You can write probability as a fraction, a decimal, or a percent.

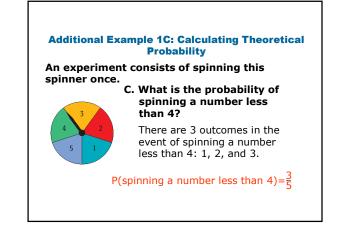
Additional Example 1A: Calculating Theoretical Probability

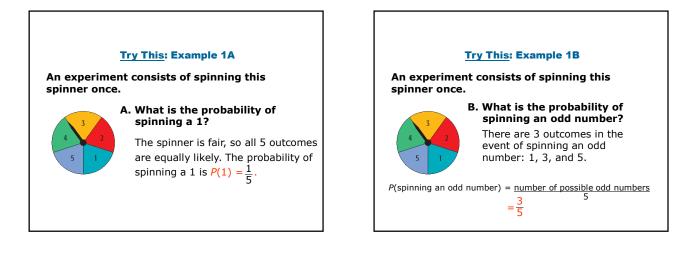
An experiment consists of spinning this spinner once.

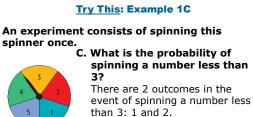
A. What is the probability of spinning a 4?

The spinner is fair, so all 5 outcomes are equally likely. The probability of spinning a 4 is $P(4) = \frac{1}{5}$.



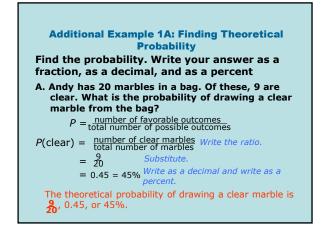


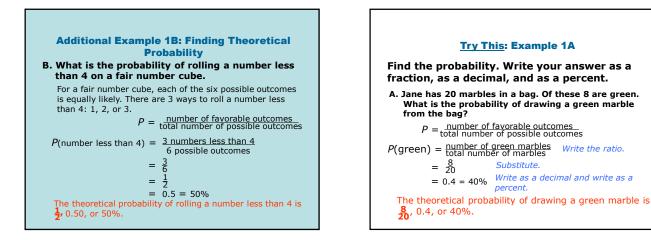


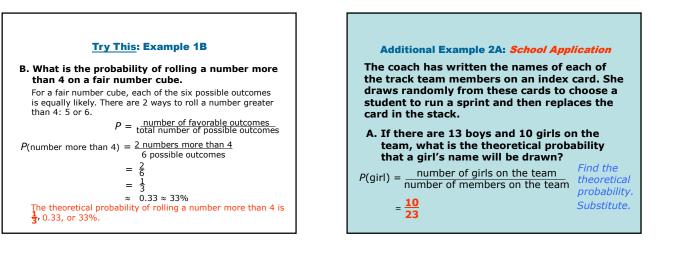


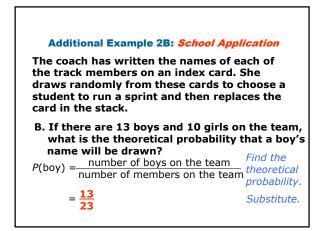
than 3: 1 and 2.

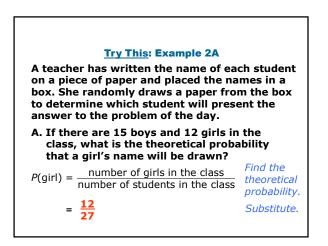
 $P(\text{spinning a number less than 3}) = \xi$



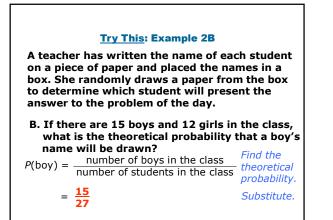








Write the ratio.



Additional Example 2A: Calculating Theoretical Probability for a Fair Die and a Fair Coin

An experiment consists of rolling one fair die and flipping a coin.

A. Show a sample space that has all outcomes equally likely.

The outcome of rolling a 5 and flipping heads can be written as the ordered pair (5, H). There are 12 possible outcomes in the sample space.

1H	2H	ЗH	4H	5H	6H
1T	2T	3T	4T	5T	6T

Additional Example 2B: Calculating Theoretical Probability for a Fair Die and a Fair Coin

An experiment consists of rolling one fair die and flipping a coin.

B. What is the probability of getting tails?

There are 6 outcomes in the event "flipping tails": (1, T), (2, T), (3, T), (4, T), (5, T), and (6, T).

 $P(\text{tails}) = \frac{6}{12} = \frac{1}{2}$

Additional Example 2C: Calculating Theoretical Probability for a Fair Die and a Fair Coin
An experiment consists of rolling one fair die and flipping a coin.
C. What is the probability of getting an even number and heads?

There are 3 outcomes in the event "getting an even number and heads": (2, H), (4, H), (6, H).

 $P(\text{even number and heads}) = \frac{3}{12} = \frac{1}{4}$

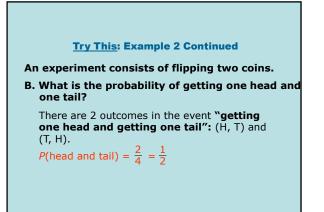
Try This: Example 2A

An experiment consists of flipping two coins.

A. Show a sample space that has all outcomes equally likely.

The outcome of flipping two heads can be written as HH. There are 4 possible outcomes in the sample space.

HH TH HT TT



Try This: Example 2C

An experiment consists of flipping two coins.

C. What is the probability of getting heads on both coins?

There is 1 outcome in the event "both heads": (H, H).

 $P(\text{both heads}) = \frac{1}{4}$

Try This: Example 2D

An experiment consists of flipping two coins.

D. What is the probability of getting both tails? There is 1 outcome in the event "both tails": (T, T).

 $P(\text{both tails}) = \frac{1}{4}$

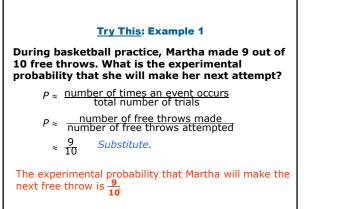
Experimental probability of an event.

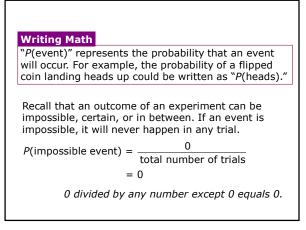
Experimental probability is one way of estimating the probability of an event. **It is based on actual experience or observations.**

Experimental probability is found by comparing the number of times an event occurs to the total number of **trials**, the times an experiment is carried out or an observation is made. The more trials you have, the more accurate the estimate is likely to be.

EXPERIMENTAL PROBABILITY

probability ~ number of times an event occurs total number of trials Additional Example 1: Sports Application During skating practice, Sasha landed 7 out of 12 jumps. What is the experimental probability that she will land her next jump? $P \approx \frac{\text{number of times an event occurs}}{\text{total number of trials}}$ $P \approx \frac{\text{number of times an event occurs}}{\text{total number of trials}}$ $P \approx \frac{\text{number of jumps landed}}{\text{number of jumps attempted}}$ $\approx \frac{7}{12}$ Substitute. The experimental probability that Sasha will land her next jump is $\frac{7}{12}$.





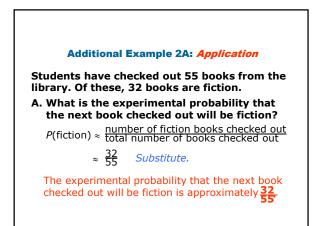
If an event is certain, it will always happen in every trial. This means that the number of times the event happens is equal to the total number of trials. $P(\text{certain event}) = \frac{\text{total number of trials}}{\text{total number of trials}}$

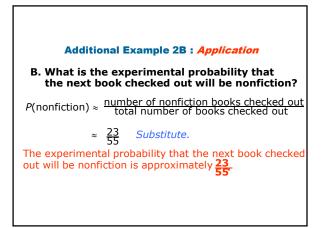
= 1

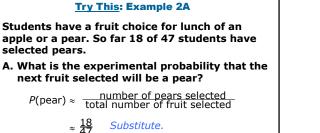
Any number except 0 divided by itself equals 1.

All probabilities can be expressed numerically on a scale from 0 to 1.

Impossible	Unlikely	As likely as not	Likely	Certain
o		<u>1</u> 2		1

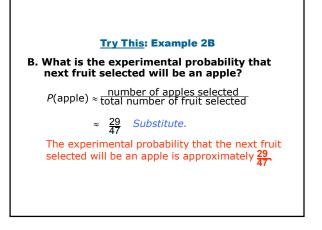


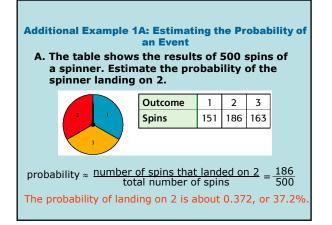


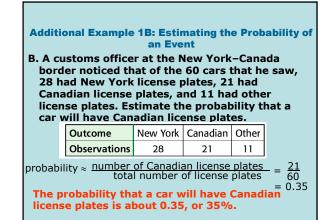


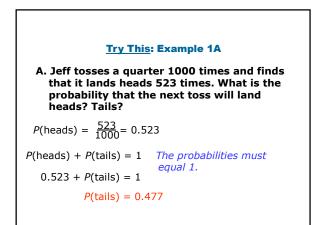
~ 4/

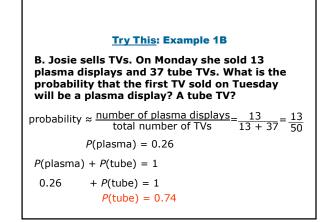
The experimental probability that the next fruit selected will be a pear is approximately $\frac{18}{47}$.





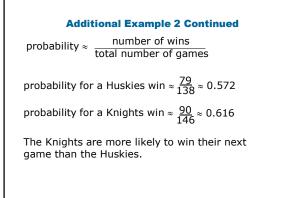






Use the table to compare the probability that the Huskies will win their next game with the probability that the Knights will win their next game.

Team	Wins	Games
Huskies	79	138
Cougars	85	150
Knights	90	146



Try This: Example 2

Use the table to compare the probability that the Huskies will win their next game with the probability that the Cougars will win their next game.

Team	Wins	Games
Huskies	79	138
Cougars	85	150
Knights	90	146

Try This: Example 2 Continued

probability $\approx \frac{\text{number of wins}}{\text{total number of games}}$

probability for a Huskies win $\approx \frac{79}{138}\approx 0.572$

probability for a Cougars win $\approx \frac{85}{150} \approx 0.567$

The Huskies are more likely to win their next game than the Cougars.

E	Exp	perimental vs.	Theoretical	
Think about a single experiment, such as tossing a coin. There are two possible outcomes, heads or tails. What is $P(\text{heads}) + P(\text{tails})$?				
Experimental Probability			Theoretical	
(coin tossed 10 times)			Probability	
Н	Т			
1411 I		$P(\text{heads}) = \frac{6}{10}P(\text{tails}) = \frac{4}{10}$	$P(\text{heads}) = \frac{1}{2} P(\text{tails}) = \frac{1}{2}$	
		$\frac{6}{10} + \frac{4}{10} = \frac{10}{10} = 1$	$\frac{1}{2} + \frac{1}{2} = \frac{2}{2} = 1$	