

Arizona's Common Core Standards

Mathematics Curriculum Map

Geometry

ARIZONA DEPARTMENT OF EDUCATION HIGH ACADEMIC STANDARDS State Board Approved June 2010

Arizona Department of Education State Board Approved June 2010 August 2012 Publication Chandler Unified School District July 2013

Mathematics – Geometry Overview of the Common Core Standards Structure - HS

Conceptual Category	Number & Quantity (N)	Algebra (A)	Functions (F)	Geometry (G)	Statistics & Probability (S)	Modeling
	The Real Number System (N-RN)	Seeing Structure in Expressions (A-SSE)	Interpreting Functions (F-IF)	Congruence (G-CO)	Interpreting Categorical & Quantitative Data (S-ID)	but rather in andard for throughout
	Quantities (N-Q)	Arithmetic with Polynomials & Rational Expressions (A-APR)	Building Functions (F-BF)	Similarity, Right Triangles, & Trigonometry (G-SRT)	Making Inferences & Justifying Conclusions (S-IC)	n of isolated topics cal models is a Sta standards appear i symbol ()
Domains	The Complex Number System (N-CN)	Creating Equations (A-CED)	Linear, Quadratic, & Exponential Models (F-LE)	Expressing Geometric Properties with Equations (G-GPE)	Conditional Probability & the Rules of Probability (S-CP)	d not as a collection Making mathemat specific modeling indicated by a star
	Vector & Matrix Quantities (N-VM)	Reasoning with Equations & Inequalities (A-REI)	Trigonometric Functions (F-TF)	Geometric Measurement & Dimension (G-GMD)	Using Probability to Make Decisions (S-MD)	Modeling is best interprete relation to other standards. Mathematical Practice, and the high school standards i

Arizona Department of Education State Board Approved June 2010 August 2012 Publication Chandler Unified School District July 2013

Geometry

standards. There is a focus on modeling, problem solving, and proof throughout the course geometric concepts studied in earlier courses and extend those ideas to new concepts presented in the high school transformations, proof, and constructions. These tools are used throughout the course as students formalize The Geometry course outlined in this document begins with developing the tools of geometry, including

the unit. depending on the focus of the unit. Strikethroughs in the text indicate that only part of the standard is addressed in revisited several times during the geometry course; others may be only partially addressed in different units the order of standards in any unit does not imply a sequence of content within the unit. Some standards may be The units are sequenced to best develop and connect the mathematical content described in the CCSSM; however,

reasoning and developing viable argument are particularly important, as are use of strategic tools and precision of be brought to bear, some practices may prove more useful than others. In a high school geometry course mathematics. While, depending on the content to be understood or on the problem to be solved, any practice might highlighting should not be interpreted to mean that other practices should be neglected in those units. language. Opportunities for highlighting certain practices are indicated in different units in this document, but this The Mathematical Practices should become a natural way in which students come to understand and do

		Q4		ပ္ထ	Q2			Ŋ		
Unit 10	Unit 9	Unit 8	Unit 7	Unit 6	Unit 5	Unit 4	Unit 3	Unit 2	Unit 1	Units In Order of Instructio n
Understanding and modeling with three-dimensional figures	Geometric modeling in two dimensions	Circles	Quadrilaterals	Right triangle relationships and trigonometry	Similarity transformations	Triangle congruence	Triangles	Angles and lines	Geometric transformations	Topic
★G-MD	★G-MG	G-CO G-PE G-MD G-MG	G-CO G-GPE	★G-SRT ★G-GPE ★G-MG	G-CO G-SRT G-GPE ∯G-MG	G-CO	G-CO ★G-MG	G-CO G-GPE	G-CO	Domains Addressed*
1, 2, 3, 4, 5, 6, 7, 8	1, 2, 3, 4, 5, 6, 7, 8	1, 2, 3, 4 , 5, 6, 7, 8	1, 2, 3 , 4, 5 , 6, 7, 8	1, 2, 3, 4, 5, 6, 7, 8	1 , 2, 3 , 4, 5, 6, 7, 8	1, 2, 3 , 4, 5, 6, 7 , 8	1, 2, 3 , 4, 5 , 6, 7, 8	1, 2, 3 , 4, 5, 6, 7 , 8	1, 2, 3, 4, 5, 6 , 7, 8	Mathematical Practices (Address all. Highlight bold.)
20	10	15	15	20	15	20	15	15	15	Suggested Unit Length (in days)

★ Specific modeling standards are in this unit.

* Some standards in the domain are addressed in this unit.

Geometry Overview

Congruence (CO)

- Experiment with transformations in the plane.
- Understand congruence in terms of rigid motions.
- Prove geometric theorems.
- Make geometric constructions.

Similarity, Right Triangles, and Trigonometry (SRT)

- Understand similarity in terms of similarity transformations.
- Prove theorems involving similarity.
- Define trigonometric ratios and solve problems involving right triangles.
- Apply trigonometry to general triangles.

Circles (C)

- Understand and apply theorems about circles.
- Find arc lengths and areas of sectors of circles.

Expressing Geometric Properties with Equations (GPE)

- Translate between the geometric description and the equation for a conic section.
- Use coordinates to prove simple geometric theorems Algebraically.

Geometric Measurement and Dimension (GMD)

- Explain volume formulas and use them to solve problems.
- Visualize relationships between two-dimensional and three-dimensional objects.

Modeling with Geometry (MG)

• Apply geometric concepts in modeling situations.

Mathematical Practices (MP)

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

The Mathematical Practices: Student Dispositions and Related Teacher Actions and Questions

Mathematics Practices		Student Dispositions	Teacher Actions	Related Questions
a productive math thinker	1.Make sense of problems and persevere in solving them	 Have or value sense-making Use patience and persistence to listen to others Be able to use strategies Use self-evaluation and redirections Be able to show or use multiple representations Communicate both verbally and in written format Be able to deduce what is a reasonable solution 	 Provide open-ended and rich problems Ask probing questions Model multiple problem-solving strategies through Think- Alouds Promotes and values discourse and collaboration Cross-curricular integrations Probe student responses (correct or incorrect) for understanding and multiple approaches Provide solutions 	 How would you describe the problem in your own words? How would you describe what you are trying to find? What do you notice about? What information is given in the problem? Describe the relationship between the quantities. Describe what you have already tried. What might you change? Talk me through the steps you've used to this point. What steps in the process are you most confident about? What are some other strategies you might try? What are some other problems that are similar to this one? How might you use one of your previous problems to help you begin? How else might you organizerepresent show?
Overarching habits of mind o	6.Attend to precision	 Communicate with precision-orally & written Use mathematics concepts and vocabulary appropriately. State meaning of symbols and use appropriately Attend to units/labeling/tools accurately Carefully formulate explanations Calculate accurately and efficiently Express answers in terms of context Formulate and make use of definitions with others and their own reasoning. 	 Think aloud/Talk aloud Explicit instruction given through use of think aloud/talk aloud Guided Inquiry including teacher gives problem, students work together to solve problems, and debriefing time for sharing and comparing strategies Probing questions targeting content of study 	 What mathematical terms apply in this situation? How did you know your solution was reasonable? Explain how you might show that your solution answers the problem. What would be a more efficient strategy? How are you showing the meaning of the quantities? What symbols or mathematical notations are important in this problem? What mathematical language,definitions, properties can you use to explain? How could you test your solution to see if it answers the problem?

Actions and dispositions from NCSM Summer Leadership Academy, Atlanta, GA • Draft, June 22, 2011)

Most questions from all Grades Common Core State Standards Flip Book

Mathematics – Geometry The Mathematical Practices: Student Dispositions and Related Teacher Actions and Questions

Mathematics Practices		Student Dispositions	Teacher Actions	Related Questions
ng and Explaining	2.Reason abstractly and quantitatively	 Create multiple representations Interpret problems in contexts Estimate first/answer reasonable Make connections Represent symbolically Visualize problems Talk about problems, real life situations Attending to units Using context to think about a problem 	 Develop opportunities for problem solving Provide opportunities for students to listen to the reasoning of other students Give time for processing and discussing Tie content areas together to help make connections Give real world situations Think aloud for student benefit Value invented strategies and representations Less emphasis on the answer 	 What do the numbers used in the problem represent? What is the relationship of the quantities? How is related to? What is the relationship between and? What does mean to you? (e.g. symbol, quantity, diagram) What properties might we use to find a solution? How did you decide in this task that you needed to use? Could we have used another operation or property to solve this task? Why or why not?
Reasoni	3.Construct viable arguments and critique the reasoning of others	 Ask questions Use examples and non-examples Analyze data Use objects, drawings, diagrams, and actions Students develop ideas about mathematics and support their reasoning Listen and respond to others Encourage the use of mathematics vocabulary 	 Create a safe environment for risk- taking and critiquing with respect Model each key student disposition Provide complex, rigorous tasks that foster deep thinking Provide time for student discourse Plan effective questions and student grouping 	 What mathematical evidence would support your solution? How can we be sure that? / How could you prove that? Will it still work if? What were you considering when? How did you decide to try that strategy? How did you test whether your approach worked? How did you decide what the problem was asking you to find? Did you try a method that did not work? Why didn't it work? Could it work? What is the same and what is different about? How could you demonstrate a counter-example?

Actions and dispositions from NCSM Summer Leadership Academy, Atlanta, GA • Draft, June 22, 2011)

Most questions from all Grades Common Core State Standards Flip Book

The Mathematical Practices: Student Dispositions and Related Teacher Actions and Questions

Mathematics Practices		Student Dispositions	Teacher Actions	Related Questions
Using Tools	4. Model with mathematics	 Realize they use mathematics (numbers and symbols) to solve/work out real-life situations When approached with several factors in everyday situations, be able to pull out important information needed to solve a problem. Show evidence that they can use their mathematical results to think about a problem and determine if the results are reasonable. If not, go back and look for more information Make sense of the mathematics 	 Allow time for the process to take place (model, make graphs, etc.) Model desired behaviors (think alouds) and thought processes (questioning, revision, reflection/written) Make appropriate tools available Create an emotionally safe environment where risk taking is valued Provide meaningful, real world, authentic, performance-based tasks (non-traditional work problems) 	 What number model could you construct to represent the problem? What are some ways to represent the quantities? What is an equation or expression that matches the diagram, number line, chart, table, and your actions with the manipulatives? Where did you see one of the quantities in the task in your equation or expression? What does each number in the equation mean? How would it help to create a diagram, graph, table? What are some ways to visually represent? What formula might apply in this situation?
Modeling and	5. Use appropriate tools strategically	 Choose the appropriate tool to solve a given problem and deepen their conceptual understanding (paper/pencil, ruler, base 10 blocks, compass, protractor) Choose the appropriate technological tool to solve a given problem and deepen their conceptual understanding (e.g., spreadsheet, geometry software, calculator, web 2.0 tools) 	 Maintain appropriate knowledge of appropriate tools Effective modeling of the tools available, their benefits and limitations Model a situation where the decision needs to be made as to which tool should be used 	 What mathematical tools can we use to visualize and represent the situation? Which tool is more efficient? Why do you think so? What information do you have? What do you know that is not stated in the problem? What approach are you considering trying first? What estimate did you make for the solution? In this situation would it be helpful to usea graph, number line, ruler, diagram, calculator, manipulative? What can using a show us thatmay not? In what situations might it be more informative or helpful to use?

Actions and dispositions from NCSM Summer Leadership Academy, Atlanta, GA • Draft, June 22, 2011)

Most questions from all Grades Common Core State Standards Flip Book

Mathematics – Geometry The Mathematical Practices: Student Dispositions and Related Teacher Actions and Questions

Mathematics Practices		Student Dispositions	Teacher Actions	Related Questions
e and generalizing	7. Look for and make use of structure	 Look for, interpret, and identify patterns and structures Make connections to skills and strategies previously learned to solve new problems/tasks Reflect and recognize various structures in mathematics Breakdown complex problems into simpler, more manageable chunks 	 Be quiet and allow students to think aloud Facilitate learning by using openended questioning to assist students in exploration Careful selection of tasks that allow for students to make connections Allow time for student discussion and processing Foster persistence/stamina in problem solving Provide graphic organizers or record student responses strategically to allow students to discover patters 	 What observations do you make about? What do you notice when? What parts of the problem might you eliminate, simplify? What patterns do you find in? How do you know if something is a pattern? What ideas that we have learned before were useful in solving this problem? What are some other problems that are similar to this one? How does this relate to? In what ways does this problem connect to other mathematical concepts?
Seeing structur	8. Look for and express regularity in repeated reasoning	 Identify patterns and make generalizations Continually evaluate reasonableness of intermediate results Maintain oversight of the process 	 Provide rich and varied tasks that allow students to generalize relationships and methods, and build on prior mathematical knowledge Provide adequate time for exploration Provide time for dialogue and reflection Ask deliberate questions that enable students to reflect on their own thinking Create strategic and intentional check in points during student work time. 	 Explain how this strategy works in other situations? Is this always true, sometimes true or never true? How would we prove that? What do you notice about? What is happening in this situation? What would happen if? Is there a mathematical rule for? What predictions or generalizations can this pattern support? What mathematical consistencies do you notice?

Actions and dispositions from NCSM Summer Leadership Academy, Atlanta, GA • Draft, June 22, 2011)

Most questions from all Grades Common Core State Standards Flip Book

Mathematics – Geometry Geometrv Unit 1: Geometric transformations. Suggested number of days: 15 In this unit, students formalize much of the geometric exploration from middle school. In this unit, students develop rigorous definition of three familiar congruence transformations: reflections, translations, and rotations and use these transformations to discover and prove geometric properties. Throughout the course, students will use transformations as a tool to analyze and describe relationships between geometric figures. **Common Core State Standards for Mathematical Content** Comments **Explanations and Examples** Congruence—G-CO As students begin to build a geometric system, precise use of language is key. IN A. Experiment with transformations in the plane. HS.G-CO.2 and -CO.3. 1. Know precise definitions of angle, circle, perpendicular this unit, the focus of G-CO.A.1 is on Students may use geometry software and/or line, parallel line, and line segment, based on the definitions not related to a circle. manipulatives to model and compare transformations. undefined notions of point, line, distance along a line, (Definitions related to a circle will be and distance around a circular arc. addressed in unit 8.) Students begin to 2. Represent transformations in the plane using, e.g., extend their understanding of rigid HS.G-CO.4. transparencies and geometry software; describe transformations to define congruence (G-Students may observe patterns and develop definitions transformations as functions that take points in the plane **CO.B.6**). (Dilations will be addressed in of rotations, reflections, and translations. as inputs and give other points as outputs. Compare unit 5.) This definition lays the foundation transformations that preserve distance and angle to for work students will do throughout the HS.G-CO.5. those that do not (e.g., translation versus horizontal course around congruence. Students may use geometry software and/or stretch). manipulatives to model transformations and 3. Given a rectangle, parallelogram, trapezoid, or regular **Common Core State Standards for** demonstrate a sequence of transformations that will polygon, describe the rotations and reflections that carry Mathematical Practice carry a given figure onto another. it onto itself. 4. Model with mathematics 4. Develop definitions of rotations, reflections, and 5. Use appropriate tools strategically translations in terms of angles, circles, perpendicular 6. Attend to precision HS.G-CO.6. lines, parallel lines, and line segments. A rigid motion is a transformation of points in space Students can use transformations to consisting of a sequence of one or more translations, model the world in which they live. reflections, and/or rotations. Rigid motions are assumed 5. Given a geometric figure and a rotation, reflection, or attending to **MP.4**, as they consider translation, draw the transformed figure using, e.g., symmetry in nature. Students should to preserve distances and angle measures. graph paper, tracing paper, or geometry software. strategically use tools, including tracing Students may use geometric software to explore the Specify a sequence of transformations that will carry a paper or dynamic geometry software, to effects of rigid motion on a figure(s). given figure onto another. perform transformations (**MP.5**). As they describe motion, students will need to B. Understand congruence in terms of rigid motions attend to MP.6, using precise language. 6. Use geometric descriptions of rigid motions to transform Allowing students to critique non-precise figures and to predict the effect of a given rigid motion definitions and make them better on a given figure; given two figures, use the definition of definitions can help students understand congruence in terms of rigid motions to decide if they the importance of the language used in are congruent. writing a precise definition.

Unit 2: Angles and lines Suggested number of days: 15

This unit gives students the foundational tools for developing viable geometric arguments using relationships students studied in middle school related to lines, transversals, and special angles associated with them. Students learn how to combine true statements within a mathematical system to deductively prove other statements. Students should begin to see the structure of a mathematical system as they make conjectures and then prove statements involving lines and angles

statements. Students should begin to see the sti	ructure of a mathematical system a	is they make conjectures and then prove statements involving lines and angles.
Common Core State Standards for	Comments	Explanations and Examples
Mathematical Content		
	Students build on their work	
Congruence—G-CO	with G-CO.A.1 from the	
A. Experiment with transformations in the	previous unit as they solidify	
plane	their understanding and use of	
1. Know precise definitions of angle,	definitions related to angles and	HS G-CO 9
circle, perpendicular line, parallel line,	lines. These definitions will	Students may use geometric simulations (computer software or graphing calculator)
and line segment, based on the	become core vocabulary and	to evolore theorems about lines and angles
undefined notions of point, line,	will be used throughout the rest	to explore theorems about lines and angles.
distance along a line, and distance	of the course. Precise	
around a circular arc.	definitions are important as	
C. Prove geometric theorems	students begin to formulate	Lines can be berizental vertical or neither
Prove theorems about lines and	proofs about lines and angles	Students may use a variaty of different methods to construct a parallel or
angles. Theorems include: vertical	as described in G-CO.C.9.	scudents may use a variety of uniferent methods to construct a parallel of
angles are congruent; when a	(Definitions related to a circle	perpendicular line to a given line and calculate the slopes to compare the
transversal crosses parallel lines,	will be addressed in unit 8).	relationships.
alternate interior angles are congruent		
and corresponding angles are	Common Core State	
congruent; points on a perpendicular	Standards for Mathematical	
bisector of a line segment are exactly	Practice	
those equidistant from the segment's	3. Construct viable arguments	
endpoints.	and critique the reasoning of	
	others.	
Expressing Geometric Properties with	6. Attend to precision	
Equations—G-GPE	7. Look for and make use of	
B. Use coordinates to prove simple geometric	structure	
theorems algebraically		
5. Prove the slope criteria for parallel and	Students build proficiency with	
perpendicular lines and use them to	MP.3 and MP.7 as they build a	
solve geometric problems (e.g., find the	mathematical system with	
equation of a line parallel or	structured statements, including	
perpendicular to a given line that	theorem Studente should be	
passes through a given point).	exposed to a variaty of proof	
	exposed to a variety of proof	
	proofs, two-column proofs, and	

ſ	paragraph proofs, as they begin	
	to build viable logical	
	arguments. Again, the use of	
	precise language, MP.6 , is	
	critical to building a logical	
	argument.	

Unit 3: Triangles Suggested number of days: 15

This unit explores basic theorems and conjectures about triangles, including the triangle inequality conjecture, the Triangle Sum Theorem, and theorems regarding centers of a triangle. Students explored some of these relationships in middle school but will build on their work in unit 2 with deductive reasoning and proof related to triangles in this unit. Students make and verify conjectures related to isosceles triangles and explore physical properties of the centroid of a triangle. In this unit, students also learn basic construction techniques and use these as they explore triangle properties. Throughout this unit, students will use the precise definitions developed in **G-CO.A.1**.

Common Core State Standards for Mathematical Content	Comments	Explanations and Examples
 Congruence—G-CO C. Prove geometric theorems Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. D. Make geometric constructions Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line. 	In this unit, the focus of G-CO.D.13 and G-C.A.3 should be on triangles, leaving the midsegments proof (G-CO.C.10) until unit 5. At that time, students can apply properties of similar triangles to midsegments. (Constructions of inscribed squares and regular hexagons and the properties of angles for inscribed quadrilaterals will be addressed in unit 8.) Common Core State Standards for Mathematical Practice 3. Construct viable arguments and critique the reasoning of others. 5. Use appropriate tools strategically. 8. Look for and express regularity in repeated reasoning	 HS.G-CO.10. Students may use geometric simulations (computer software or graphing calculator) to explore theorems about triangles. HS.G-CO.12. Students may use geometric software to make geometric constructions. Examples: Construct a triangle given the lengths of two sides and the measure of the angle between the two sides. Construct the circumcenter of a given triangle.
 13. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. Circles—G-C A. Understand and apply theorems about circles Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a 	As students explore properties of triangles, they will attend to MP.5 , strategically choosing tools such as tracing paper, compass and straightedge, flow charts, and dynamic geometry software for a given situation. As students	 HS.G-CO.13. Students may use geometric software to make geometric constructions. HS.G-C.3. Students may use geometric simulation software to
 Modeling with Geometry—G-MG A. Apply geometric concepts in modeling situations 1. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). 	make conjectures about properties of triangles. Students gain proficiency in MP.3 as they continue to write simple proofs using a variety of styles.	make geometric constructions. HS.G-MG.1. Students may use simulation software and modeling software to explore which model best describes a set of data or situation.

Unit 4: Triangle congruence Suggested number of days: 20

This unit builds on students' work with transformations in unit 1 and properties of triangles in unit 3 to formalize the definition of congruent triangles. Students reason to identify criteria for triangle congruence and use precise notation to describe the correspondence in congruent triangles.

Common Core State Standards for Mathematical Content	Comments	Explanations and Examples
 Congruence—G-CO B. Understand congruence in terms of rigid motions 6. Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent. 	In unit 1, students began to use rigid motion transformations to decide if two figures were congruent (G-CO.B.6). In this unit, students will return to this idea as they develop shortcuts for proving two triangles are congruent (G-CO.B.8). Common Core State Standards for Mathematical Practice	HS.G-CO.6. A rigid motion is a transformation of points in space consisting of a sequence of one or more translations, reflections, and/or rotations. Rigid motions are assumed to preserve distances and angle measures. Students may use geometric software to explore the effects of rigid motion on a figure(s).
 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions. 	 Construct viable arguments and critique the reasoning of others Attend to precision Look for and make use of structure Students build proficiency with MP.3 and MP.7 as they create congruent triangle proofs. Allowing students to critique proofs of other students, whether the work of classmates or fictional student work, will help them develop their own skill in writing proofs. Students continue to build understanding of the structure of a mathematical system and recognize the importance of precise language (MP.6). 	 HS.G-CO.7. A rigid motion is a transformation of points in space consisting of a sequence of one or more translations, reflections, and/or rotations. Rigid motions are assumed to preserve distances and angle measures. Congruence of triangles Two triangles are said to be congruent if one can be exactly superimposed on the other by a rigid motion, and the congruence theorems specify the conditions under which this can occur.

Unit 5: Similarity transformations Suggested number of days: 15

This unit moves away from rigid motion and focuses on dilations and similarity. Students prove theorems involving similarity and apply dilations and similarity to model situations in the real world.

Common Core State Standards for	Comments	Explanations and Examples
Mathematical Content		
	In this unit, students return to	
Congruence—G-CO	G-CO.C.10 to address	
C. Prove geometric theorems	midsegments of a triangle,	HS.G-CO.10.
10. Prove theorems about triangles.	making a connection to G-	Students may use geometric simulations (computer software or graphing calculator)
Theorems include: measures of interior	SRT.B.4, treating	to explore theorems about triangles.
angles of a triangle sum to 180°; base	midsegments as a special	
angles of isosceles triangles are	case of triangle proportionality.	
congruent ; the segment joining	Students revisit the	HS.G-SRT.1.
midpoints of two sides of a triangle is	Pythagorean Theorem, which	Dilation is a transformation that moves each point along the ray through the point
parallel to the third side and half the	they studied in grade 8, but	emanating from a fixed center, and multiplies distances from the center by a
length; the medians of a triangle meet	look at a proof based on	common scale factor.
at a point.	similarity (G-SRT.B.4). The	Students may use geometric simulation software to model transformations. Students
	focus is on developing logical	may observe patterns and verify experimentally the properties of dilations
Similarity, Right Triangles, and	arguments to prove a known	
Trigonometry—G-SRT	theorem in a different way. G-	
A. Understand similarity in terms of similarity	GPE.B.6 provides a unique	A similarity transformation is a rigid motion followed by dilation
transformations	way to think about finding the	Students may use geometric simulation software to model transformations and
1. Verify experimentally the properties of	midpoint of a line segment.	Scudents may use geometric simulation software to model transformations and
dilations given by a center and a scale		demonstrate a sequence of transformations to show congruence or similarity of
factor:	Common Core State	figures.
a. A dilation takes a line not passing	Standards for Mathematical	
through the center of the dilation	Practice	
to a parallel line, and leaves a	1. Make sense of problems	HS.G-SRT.4.
line passing through the center	and persevere in solving	Students may use geometric simulation software to model transformations and
unchanged.	them.	demonstrate a sequence of transformations to show congruence or similarity of
b. The dilation of a line segment is	3. Construct viable arguments	figures.
longer or shorter in the ratio given	and critique the reasoning	
by the scale factor.	of others.	
2. Given two figures, use the definition of	8. Look for and express	
similarity in terms of similarity	regularity in repeated	HS.G-SRT.5.
transformations to decide if they are	reasoning.	Similarity postulates include SSS, SAS, and AA.
similar; explain using similarity	Circularity and properties	Congruence postulates include SSS, SAS, ASA, AAS, and H-L.
transformations the meaning of	Similarity and proportional	Students may use geometric simulation software to model transformations and
similarity for triangles as the equality of		demonstrate a sequence of transformations to show congruence or similarity of
all corresponding pairs of angles and	tools in representing and	figures.
the proportionality of all corresponding	solving real-world problems,	

COMMON CORE STANDARDS	Mathematics – Geomet	ry
 pairs of sides. 3. Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar. B. Prove theorems involving similarity 4. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity. 5. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. 	allowing students to develop proficiency with MP.1 . As students investigate design problems (G-MG.A.3), they will often need to model the problem with scaled images. Much of MP.1 has to do with understanding how to represent a situation and what mathematical tools can be applied to the situation. In this unit, students continue to build their mathematical system, attending to MP.8 as they look for patterns in geometric relationships, and then prove their conjectures, attending to MP.3 .	 HS.G-GPE.6 Students may use geometric simulation software to model figures or line segments. Examples: Given A(3, 2) and B(6, 11), Find the point that divides the line segment AB two-thirds of the way from A to B. The point two-thirds of the way from A to B has x-coordinate two-thirds of the way from 3 to 6 and y coordinate two-thirds of the way from 2 to 11. So, (5, 8) is the point that is two-thirds from point A to point B. Find the midpoint of line segment AB
 Expressing Geometric Properties with Equations—G-GPE B. Use coordinates to prove simple geometric theorems algebraically 6. Find the point on a directed line segment between two given points that partitions the segment in a given ratio. Modeling with Geometry—G-MG A. Apply geometric concepts in modeling		HS.G-MG.3. Students may use simulation software and modeling software to explore which model best describes a set of data or situation.
situations 3. Apply geometric methods to solve		

common cone sinnonacos	
design problems (e.g. designing an	
design problems (e.g., designing an	
object or structure to satisfy physical	
constraints or minimize cost; working	
with typographic grid systems based on	
ration	
rauos).	

Unit 6: Right triangle relationships and trigonometry Suggested number of days: 20

This unit extends the idea of similarity to indirect measurements. Students develop properties of special right triangles, and use properties of similar triangles to develop trigonometric ratios. Students apply these ideas as they model real-world situations and solve problems involving unknown side lengths and angle measures.

measures.					
Common Core State Standards for	Comments	Explanations an	d Examples		
Mathematical Content		HS.G-SRT.5.			
	In the previous unit, students	Similarity postulate	es include SSS, SAS	, and AA.	
Similarity, Right Triangles, and	looked at another proof of the	Congruence postul	ates include SSS. S	AS. ASA. AAS. and H	1-L.
Trigonometry—G-SRT	Pythagorean Theorem. In this	Students may use a	eometric simulati	on software to mod	lel transformations and
B. Prove theorems involving similarity	unit, they continue to solve	demonstrate a seg	uence of transform	nations to show con	gruence or similarity of
5. Use congruence and similarity criteria	problems involving right	figures			ignuence of similarity of
for triangles to solve problems and to	triangles (G-SRT.C.8), but can	liguies.			
prove relationships in geometric	combine the Pythagorean				
figures.	Theorem and trigonometric				
0	ratios in their solutions. G-	HS.G-SRT.6.			
	GPE.B.7 presents an	Students may use a	applets to explore	the range of values	of the trigonometric ratios as
C. Define trigonometric ratios and solve	opportunity for students to	θ ranges from 0 to	90 degrees.		
problems involving right triangles	apply the Pythagorean	А			
6. Understand that by similarity, side	Theorem to develop the				
ratios in right triangles are properties	distance formula and use the				
of the angles in the triangle, leading	formula to compute area and	h			
to definitions of trigonometric ratios	perimeter.	(hypotenuse)	(onnocita)		
for acute angles.			(opposite)		
5	Common Core State				
	Standards for Mathematical	\wedge^{θ}			
	Practice	(adjacent)			
	1. Make sense of problems and	Name	Ratio	Notation]
	persevere in solving them.	Sine	opposite/hypotenuse	Sin(θ)	
	2. Reason abstractly and	Cosine	adjacent/hypotenuse	Cos(0)	
	quantitatively.	Tananat	aujucent, nypotenuse	T== (0)	
	4. Model with mathematics.	Tangent	opposite/adjacent	Tan(0)	
	Although area and perimeter	Cosecant (1/Sine)	hypotenuse/opposite	Cosec(θ) or csc(θ)	
	were fully covered in middle	Secant (1/Cosine)	hypotenuse/adjacent	Sec(0)	
	school, the standards in this	Cotangent (1/Tangent)	adjacent/opposite	Cot(θ)	
	unit give students an				1
	opportunity to consolidate old				
	learning and new learning as	HS G-SRT 7			
	they solve more complex	Goometric simulat	ion coftwara analy	ate and graphing ca	leulators can be used to
	problems with an array of		ion soltware, apple	ers, and graphing Ca	iculators call be used to
	mathematical tools to choose	explore the relation	nship between sind	e and cosine.	

COMMON CORE STANDARDS	Mathematics – Geomet	N
 7. Explain and use the relationship between the sine and cosine of complementary angles. 8. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. 	from. These problem-solving experiences attend to MP.1 and MP.4 . As students decide how to model situations geometrically and apply properties to the situations, they are attending to MP.2 .	 HS.G-SRT.8. Students may use graphing calculators or programs, tables, spreadsheets, or computer algebra systems to solve right triangle problems. Example: Find the height of a tree to the nearest tenth if the angle of elevation of the sun is 28° and the shadow of the tree is 50 ft. Image: Solve feet HS.G-GPE.7. Students may use geometric simulation software to model figures.
 Expressing Geometric Properties with Equations—G-GPE B. Use coordinates to prove simple geometric theorems algebraically 7. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. Modeling with Geometry—G-MG A. Apply geometric concepts in modeling situations Use geometric shapes, their measures, and their properties to 		 HS.G-MG.1. Students may use simulation software and modeling software to explore which model best describes a set of data or situation. HS.G-MG.3 Students may use simulation software and modeling software to explore which model best describes a set of data or situation.
Adapted from Agile Mind CCSS Geometry Scope and Seque	nce 2011. Agile Mind. Inc. and Charles A.	Dana Center

Mathematics – Geometry

COMMON CORE STANDARDS	mathematics	Coomen	3
describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).			
 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). 			

Unit 7: Quadrilaterals Suggested number of days	s: 15	
Prior units of this course have focused on triangles. This unit ext	tends that work to the study of quadrilaterals.	Students use triangle congruence as they prove
theorems about parallelograms. This unit also provides an oppo	rtunity for students to become proficient with	coordinate proofs.
Common Core State Standards for Mathematical Content	Comments	Explanations and Examples
 Congruence—G-CO C. Prove geometric theorems 11. Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals. Expressing Geometric Properties with Equations—G-GPE B. Use coordinates to prove simple geometric theorems algebraically 	Many of the properties of special quadrilaterals lend themselves to coordinate proofs, making a nice connection between G-CO.C.11 and G- GPE.B.4 . (Coordinate proofs related to circles are addressed in unit 8.) Because students have studied and applied the Pythagorean Theorem and the distance formula in previous units, they are ready to use them, along with the midpoint formula and slope relationships from unit 2, to prove theorems about quadrilaterals.	HS.G-CO.11. Students may use geometric simulations (computer software or graphing calculator) to explore theorems about parallelograms.
4. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).	 Common Core State Standards for Mathematical Practice 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 5. Use appropriate tools strategically. As students become more proficient in geometric reasoning, they begin to consolidate all of their learning to solve problems and prove theorems (MP.2, MP.3). Coordinate proofs are a strategic tool students can use (MP.5). 	 HS.G-GPE.4. Students may use geometric simulation software to model figures and prove simple geometric theorems. Example: Use slope and distance formula to verify the polygon formed by connecting the points (-3, -2), (5, 3), (9, 9), (1, 4) is a parallelogram.

Unit 8: Circles Suggested number of days: 15			
I his unit explores properties of circles. Students	s araw on geometric relationships in	hyorving lines, angles, triangles and quadrilaterals as they derive the equation of	
a circle and explore properties of chords, arcs, a	and angles on circles.	Fundamental Francisco	
Common Core State Standards for	Comments	Explanations and Examples	
Mathematical Content			
	As students explore		
Congruence—G-CO	relationships involving circles,	HS.G-CO.13	
D. Make geometric constructions	they can return to quadrilaterals	Students may use geometric software to make geometric constructions.	
13. Construct an equilateral triangle , a	to prove an additional property		
square, and a regular hexagon	of inscribed quadrilaterals (G-		
inscribed in a circle.	C.A.3). They will also use		
	properties of quadrilaterals and	HS.G-C.1.	
Circles—G-C	triangles, combined with	Students may use geometric simulation software to model transformations and	
A. Understand and apply theorems about	inscribed angles and	demonstrate a sequence of transformations to show congruence or similarity of	
circles	trigonometry, to construct a	figures.	
1. Prove that all circles are similar.	square and hexagon inscribed		
	in a circle (G-CO.D.13). This		
	unit provides an opportunity to	HS.G-C.2	
	reinforce many concepts	Examples:	
	addressed earlier in the course	• Given the circle below with radius of 10 and chord length of 12 find the	
	as they are applied within	distance from the chord to the center of the circle	
	circles. G-C.B.5 and G-		
2. Identify and describe relationships	GMD.A.1 work together to	12	
among inscribed angles, radii, and	present an opportunity to revisit		
chords. Include the relationship	the concept of area and		
between central, inscribed, and	perimeter in a more complex		
circumscribed angles; inscribed	manner than in middle school.		
angles on a diameter are right	(Volume of a cylinder, pyramid		
angles; the radius of a circle is	and cone is addressed in unit		
perpendicular to the tangent where	10.) G-C.B.5 also extends the	• Find the unknown length in the picture below.	
the radius intersects the circle.	Idea of arc length to introduce		
	the idea of the radian measure		
	of an angle. The focus in this	0/r	
	course should be on		
	proportional relationships, as		
	raulan measure can be		
	Studente une geordinates te	Studente may use geometric simulation software to make geometric constructions	
2. Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.	circles. G-C.B.5 and G- GMD.A.1 work together to present an opportunity to revisit the concept of area and perimeter in a more complex manner than in middle school. (Volume of a cylinder, pyramid and cone is addressed in unit 10.) G-C.B.5 also extends the idea of arc length to introduce the idea of the radian measure of an angle. The focus in this course should be on proportional relationships, as radian measure can be reinforced in fourth-year course. Students use coordinates to	distance from the chord to the center of the circle. 12 10 • Find the unknown length in the picture below. 10 6 10 x HS.G-C.3 and G-C.4. Students may use geometric simulation software to make geometric constructions.	

COMMON CORE STANDARDS	Mathematics – Geomet	ry
	describe and analyze circles (G-GPE.A.1 and G-GPE.B.4).	HS.G-C.5. Students can use geometric simulation software to explore angle and radian measures and derive the formula for the area of a sector.
 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle. (+) Construct a tangent line from a point outside a given circle to the circle. 		 HS.G-GPE.1. Students may use geometric simulation software to explore the connection between circles and the Pythagorean Theorem. Examples: Write an equation for a circle with a radius of 2 units and center at (1, 3). Write an equation for a circle given that the endpoints of the diameter are (-2, 7) and (4, -8). Find the center and radius of the circle
 B. Find arc lengths and areas of sectors of circles 5. Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. 		 4x² + 4y² - 4x + 2y - 1 = 0. HS.G-GPE.4. Students may use geometric simulation software to model figures and prove simple geometric theorems.
Expressing Geometric Properties with Equations—G-GPE A. Translate between the geometric description and the equation for a conic		HS.G-GMD.1. Cavalieri's principle is if two solids have the same height and the same cross-sectional area at every level, then they have the same volume.
section 1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.		HS.G-MG.1. Students may use simulation software and modeling software to explore which model best describes a set of data or situation.

 B. Use coordinates to prove simple geometric theorems algebraically 4. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2). Geometric measurement and dimension—G-GMD A. Explain volume formulas and use them to solve problems Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments. Modeling with Geometry—G-MG A. Apply geometric concepts in modeling situations Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). 	Common Core State Standards for Mathematical Practice 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. Circle problems provide an opportunity for complex problem-solving situations that consolidate many different geometric relationships (MP.2 and MP.4). In developing the relationships, students will look for patterns, make conjectures, and then construct logical arguments to justify their conjectures. Again, allow opportunities for students to share their own reasoning and critique the reasoning of others in these problem situations (MP.5).	
---	---	--

Mathematics – Geometry Unit 9: Geometric modeling in two dimensions Suggested number of days: 10 In prior units of this course, students learned about many geometric relationships and developed a mathematical system. This unit provides the opportunity to bring together all of the relationships students have learned in this course and apply them to real-world situations. The unit should present in-depth problems that require students to draw on their understanding of geometric figures and strategically use the tools they have been developing throughout the course. **Common Core State Standards for** Comments **Explanations and Examples** Mathematical Content In this unit, focus the modeling HS.G-MG.1, -MG.2, and –MG.3. Modeling with Geometry—G-MG examples on two-dimensional Students may use simulation software and modeling software to explore which A. Apply geometric concepts in modeling objects only. Unit 10 will bring in model best describes a set of data or situation. situations three-dimensional objects. 1. Use geometric shapes, their measures, and their properties to **Common Core State** Standards for Mathematical describe objects (e.g., modeling a tree trunk or a human torso as a Practice cvlinder). 1. Make sense of problems and 2. Apply concepts of density based on persevere in solving them. 2. Reason abstractly and area and volume in modeling situations (e.g., persons per square quantitatively. mile, BTUs per cubic foot). 4. Model with mathematics. The problems presented in this unit should require students to 3. Apply geometric methods to solve struggle and collaborate, thus building their mathematical design problems (e.g., designing an object or structure to satisfy physical persistence (**MP.1**). Students should see ways to use the constraints or minimize cost; working geometric relationships they with typographic grid systems based on ratios). have been learning throughout the course to model real-world situations (MP.4). As students model situations geometrically, they will often have to decontextualize the problem and apply geometric properties (MP.2).

Mathematics – Geometry Unit 10: Understanding and modeling with three-dimensional figures Suggested number of days: 20 This unit explores three-dimensional geometry including representations of real-world situations with three-dimensional objects and calculating volume. Students make connections between two-dimensional and three-dimensional representations of objects. Students culminate the course with modeling problems involving three-dimensional objects, allowing them again to integrate their knowledge and apply complex geometric reasoning. **Common Core State Standards for** Comments **Explanations and Examples** Mathematical Content In G-GMD.A.1. focus on three Geometric measurement and dimensiondimensional objects. Students HS.G-GMD.1. have worked with the volume G-GMD Cavalieri's principle is if two solids have the same height and the same cross-sectional A. Explain volume formulas and use them to formulas in middle school, so area at every level, then they have the same volume. solve problems the focus here should be on 1. Give an informal argument for the developing arguments for the formulas for the circumference of a formulas and applying them to HS.G-GMD.3. circle, area of a circle, volume of a more complex situations. Missing measures can include but are not limited to slant height, altitude, height, cylinder, pyramid, and cone, Use diagonal of a prism, edge length, and radius. dissection arguments, Cavalieri's **Common Core State** principle, and informal limit Standards for Mathematical arguments. Practice HS.G-GMD.4. 3. Use volume formulas for cylinders, 1. Make sense of problems and Students may use geometric simulation software to model figures and create cross pyramids, cones, and spheres to persevere in solving them. sectional views. solve problems. 2. Reason abstractly and Example: quantitatively • Identify the shape of the vertical, horizontal, and other cross sections of a 4. Model with mathematics. cylinder. B. Visualize relationships between two-The problems presented in this dimensional and three dimensional objects unit should require students to 4. Identify the shapes of twostruggle and collaborate, thus dimensional cross-sections of threebuilding their mathematical dimensional objects, and identify persistence (MP.1). Students HS.G-MG.1, -MG.2, and -MG.3. three-dimensional objects generated should see ways to use the Students may use simulation software and modeling software to explore which by rotations of two-dimensional geometric relationships they model best describes a set of data or situation. have been learning throughout objects. the course to model real-world Modeling with Geometry—G-MG situations (**MP.4**). As students A. Apply geometric concepts in modeling model situations geometrically, they will often have to situations 1. Use geometric shapes, their decontextualize the problem and apply geometric properties measures, and their properties to describe objects (e.g., modeling a (MP.2). tree trunk or a human torso as a cylinder).

OMMON CORE STANDARDS	Mathematics – Geometi	y second s
 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). 		
 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). 		