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FIGURE 27.1
Percent Body Fat vs. Waist size for 250
men of various ages. The scatterplot
shows a strong, positive, linear 
relationship.

Back in Chapter 8 we modeled relationships like this by fitting a least squares
line. The plot is clearly straight, so we can find that line. The equation of the least
squares line for these data is

The slope says that, on average, %Body Fat is greater by 1.7 percent for each
additional inch around the waist.

%Body Fat = -42.7 + 1.7 Waist.

WHO 250 male subjects

WHAT Body fat and waist
size

UNITS % Body fat and inches

WHEN 1990s

WHERE United States

WHY Scientific research

Three percent of a man’s body is essential fat. (For a woman, the percent-
age is closer to 12.5%.) As the name implies, essential fat is necessary for
a normal, healthy body. Fat is stored in small amounts throughout your
body. Too much body fat, however, can be dangerous to your health. For

men between 18 and 39 years old, a healthy percent body fat ranges from 8% to
19%. (For women of the same age, it’s 21% to 32%.)

Measuring body fat can be tedious and expensive. The “standard reference”
measurement is by dual-energy X-ray absorptiometry (DEXA), which involves
two low-dose X-ray generators and takes from 10 to 20 minutes.

How close can we get to a useable prediction of body fat from easily measur-
able variables such as Height, Weight, or Waist size? Here’s a scatterplot of %Body
Fat plotted against Waist size for a sample of 250 males of various ages.
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NOTATION ALERT:

This time we used up only one
Greek letter for two things.
Lower-case Greek (beta) is the
natural choice to correspond to
the b’s in the regression
equation. We used before for
the probability of a Type II error,
but there’s little chance of
confusion here.

b

b

650 CHAPTER 27    Inferences for Regression

How useful is this model? When we fit linear models before, we used them to
describe the relationship between the variables and we interpreted the slope and
intercept as descriptions of the data. Now we’d like to know what the regression
model can tell us beyond the 250 men in this study. To do that, we’ll want to make
confidence intervals and test hypotheses about the slope and intercept of the re-
gression line.

The Population and the Sample
When we found a confidence interval for a mean, we could imagine a single, true
underlying value for the mean. When we tested whether two means or two pro-
portions were equal, we imagined a true underlying difference. But what does it
mean to do inference for regression? We know better than to think that even if we
knew every population value, the data would line up perfectly on a straight line.
After all, even in our sample, not all men who have 38-inch waists have the same
%Body Fat. In fact, there’s a whole distribution of %Body Fat for these men:
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FIGURE 27.2
The distribution of %Body Fat for men with a Waist size of 
38 inches is unimodal and symmetric.
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FIGURE 27.3
There’s a distribution of %Body Fat for
each value of Waist size. We’d like the
means of these distributions to line up.

This is true at each Waist size. In fact, we could depict the distribution of
%Body Fat at different Waist sizes like this:

But we want to model the relationship between %Body Fat and Waist size for all
men. To do that, we imagine an idealized regression line. The model assumes that
the means of the distributions of %Body Fat for each Waist size fall along the line,
even though the individuals are scattered around it. We know that this model is
not a perfect description of how the variables are associated, but it may be useful
for predicting %Body Fat and for understanding how it’s related to Waist size.

If only we had all the values in the population, we could find the slope and
intercept of this idealized regression line explicitly by using least squares. Following
our usual conventions, we write the idealized line with Greek letters and consider
the coefficients (the slope and intercept) to be parameters: is the intercept and

is the slope. Corresponding to our fitted line of , we write

Why instead of ? Because this is a model. There is a distribution of %Body Fat
for each Waist size. The model places the means of the distributions of %Body Fat
for each Waist size on the same straight line.

yNmy

my = b0 + b1x.

yN = b0 + b1xb1

b0
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Assumptions and Conditions 651

Of course, not all the individual y’s are at these means. (In fact, the line will
miss most—and quite possibly all—of the plotted points.) Some individuals lie
above and some below the line, so, like all models, this one makes errors. Lots of
them. In fact, one at each point. These errors are random and, of course, can be
positive or negative. They are model errors, so we use a Greek letter and denote
them by .

When we put the errors into the equation, we can account for each indi-
vidual y:

This equation is now true for each data point (since there is an to soak up the de-
viation), so the model gives a value of y for any value of x.

For the body fat data, an idealized model such as this provides a summary of
the relationship between %Body Fat and Waist size. Like all models, it simplifies
the real situation. We know there is more to predicting body fat than waist size
alone. But the advantage of a model is that the simplification might help us to
think about the situation and assess how well %Body Fat can be predicted from
simpler measurements.

We estimate the ’s by finding a regression line, , as we did in
Chapter 8. The residuals, , are the sample-based versions of the errors, .
We’ll use them to help us assess the regression model.

We know that least squares regression will give reasonable estimates of the
parameters of this model from a random sample of data. Our challenge is to ac-
count for our uncertainty in how well they do. For that, we need to make some 
assumptions about the model and the errors.

Assumptions and Conditions
Back in Chapter 8 when we fit lines to data, we needed to check only the Straight
Enough Condition. Now, when we want to make inferences about the coefficients
of the line, we’ll have to make more assumptions. Fortunately, we can check con-
ditions to help us judge whether these assumptions are reasonable for our data.
And as we’ve done before, we’ll make some checks after we find the regression
equation.

Also, we need to be careful about the order in which we check conditions. If
our initial assumptions are not true, it makes no sense to check the later ones. So
now we number the assumptions to keep them in order.

1. Linearity Assumption
If the true relationship is far from linear and we use a straight line to fit the data,
our entire analysis will be useless, so we always check this first.

The Straight Enough Condition is satisfied if a scatterplot looks straight.
It’s generally not a good idea to draw a line through the scatterplot when
checking. That can fool your eyes into seeing the plot as more straight. Some-
times it’s easier to see violations of the Straight Enough Condition by looking
at a scatterplot of the residuals against x or against the predicted values, . That
plot will have a horizontal direction and should have no pattern if the condi-
tion is satisfied.

If the scatterplot is straight enough, we can go on to some assumptions about
the errors. If not, stop here, or consider re-expressing the data (see Chapter 10) to
make the scatterplot more nearly linear. For the %Body Fat data, the scatterplot is
beautifully linear. Of course, the data must be quantitative for this to make sense.
Check the Quantitative Data Condition.

yN

ee = y - yN
yN = b0 + b1xb

e

y = b0 + b1x + e.

e

Activity: Conditions for
Regression Inference. View an
illustrated discussion of the
conditions for regression
inference.

Check the scatterplot.
The shape must be linear 
or we can’t use linear
regression at all.

40

30

20

10

0

%
 B

od
y 

Fa
t

30 4035 45
Waist (in.)

BOCK_C27_0321570448 pp3.qxd  11/29/08  6:54 PM  Page 651



Check the residuals plot (2).
The vertical spread of the
residuals should be roughly
the same everywhere.

Check the residuals plot (1).
The residuals should appear
to be randomly scattered.

652 CHAPTER 27    Inferences for Regression

2. Independence Assumption
Independence Assumption: The errors in the true underlying regression model
(the ’s) must be mutually independent. As usual, there’s no way to be sure that
the Independence Assumption is true.

Usually when we care about inference for the regression parameters, it’s be-
cause we think our regression model might apply to a larger population. In such
cases, we can check a Randomization Condition that the individuals are a repre-
sentative sample from that population.

We can also check displays of the regression residuals for evidence of pat-
terns, trends, or clumping, any of which would suggest a failure of independence.
In the special case when the x-variable is related to time, a common violation of
the Independence Assumption is for the errors to be correlated. (The error our
model makes today may be similar to the one it made for yesterday.) This viola-
tion can be checked by plotting the residuals against the x-variable and looking
for patterns.

The %Body Fat data were collected on a sample of men taken to be represen-
tative. The subjects were not related in any way, so we can be pretty sure that their
measurements are independent. The residuals plot shows no pattern.

3. Equal Variance Assumption
The variability of y should be about the same for all values of x. In Chapter 8 we
looked at the standard deviation of the residuals to measure the size of the
scatter. Now we’ll need this standard deviation to build confidence intervals and
test hypotheses. The standard deviation of the residuals is the building block for
the standard errors of all the regression parameters. But it makes sense only if the
scatter of the residuals is the same everywhere. In effect, the standard deviation
of the residuals “pools” information across all of the individual distributions at
each x-value, and pooled estimates are appropriate only when they combine in-
formation for groups with the same variance.

Practically, what we can check is the Does the Plot Thicken? Condition. A
scatterplot of y against x offers a visual check. Fortunately, we’ve already made
one. Make sure the spread around the line is nearly constant. Be alert for a “fan”
shape or other tendency for the variation to grow or shrink in one part of the
scatterplot. Often it is better to look at the residuals plotted against the pre-
dicted values, . With the slope of the line removed, it’s easier to see patterns
left behind. For the body fat data, the spread of %Body Fat around the line is re-
markably constant across Waist sizes from 30 inches to about 45 inches.

If the plot is straight enough, the data are independent, and the plot doesn’t
thicken, you can now move on to the final assumption.

4. Normal Population Assumption
We assume the errors around the idealized regression line at each value of x fol-
low a Normal model. We need this assumption so that we can use a Student’s 
t-model for inference.

As we have at other times when we’ve used Student’s t, we’ll settle for the
residuals satisfying the Nearly Normal Condition and the Outlier Condition.
Look at a histogram or Normal probability plot of the residuals.1
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FIGURE 27.5
A scatterplot of residuals against pre-
dicted values can help check for plot
thickening. Note that this plot looks
identical to the plot of residuals
against Waist size. For a regression of
one response variable on one predic-
tor, these plots differ only in the labels
on the x-axis.

1 This is why we have to check the conditions in order. We have to check that the residuals
are independent and that the variation is the same for all x’s so that we can lump all the
residuals together for a single check of the Nearly Normal Condition.
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FIGURE 27.4
The residuals show only random scat-
ter when plotted against Waist size.
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FIGURE 27.6
A histogram of the residuals is one 
way to check whether they are nearly
Normal. Alternatively, we can look 
at a Normal probability plot.

Check a histogram of the
residuals.
The distribution of the
residuals should be
unimodal and symmetric.

Assumptions and Conditions 653

The histogram of residuals in the %Body Fat regression certainly looks nearly
Normal. As we have noted before, the Normality Assumption becomes less 
important as the sample size grows, because the model is about means and the
Central Limit Theorem takes over.

If all four assumptions were true, the idealized regression model would look
like this:

FIGURE 27.7
The regression model has a distribution of 
y-values for each x-value. These distributions
follow a normal model with means lined up
along the line and with the same standard
deviations.

At each value of x there is a distribution of y-values that follows a Normal
model, and each of these Normal models is centered on the line and has the same
standard deviation. Of course, we don’t expect the assumptions to be exactly true,
and we know that all models are wrong, but the linear model is often close
enough to be very useful.

Checking assumptions and conditionsFOR EXAMPLE

Look at the moon with binoculars or a telescope, and you’ll see craters formed by thousands of impacts. The earth, being larger, has been hit even more
often. Meteor Crater in Arizona was the first recognized impact crater and was identified as such only in the 1920s. With the help of satellite images,
more and more craters have been identified; now more than 180 are known. These, of course, are only a small sample of all the impacts the earth has
experienced: Only 29% of earth’s surface is land, and many craters have been covered or eroded away. Astronomers have recognized a roughly 35 million-
year cycle in the frequency of cratering, although the cause of this cycle is not fully understood. Here’s a scatterplot of the known impact craters from
the most recent 35 million years.2 We’ve taken logs of both age (in millions of years ago) and diameter (km) to make the relationship simpler. (See
Chapter 10.)

2 Data, pictures, and much more information at the Earth Impact Database found at 
http://www.unb.ca.
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WHO 39 impact craters

WHAT Diameter and age

UNITS km and millions of
years ago

WHEN Past 35 million years

WHERE Worldwide

WHY Scientific research

Question: Are the assumptions and conditions satisfied for fitting a linear regression model to these data?

Ç Linearity Assumption: The scatterplot satisfies the Straight Enough Condition.
Ç Independence Assumption: Sizes of impact craters are likely to be generally independent.

(continued)
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Ç Randomization Condition: These are the only known craters, and may differ from others that have disappeared or
not yet been found. I’ll need to be careful not to generalize my conclusions too broadly.

Ç Does the Plot Thicken? Condition: After fitting a linear model,
I find the residuals shown.

Two points seem to give the impression that the residuals
may be more variable for higher predicted values than for lower
ones, but this doesn’t seem to be a serious violation of the
Equal Variance Assumption.

Ç Nearly Normal Condition: A Normal
probability plot suggests a bit of
skewness in the distribution of
residuals, and the histogram 
confirms that.

There are no violations severe enough
to stop my regression analysis, but
I’ll be cautious about my conclusions.

654 CHAPTER 27    Inferences for Regression

Which Come First: the Conditions 
or the Residuals?

In regression, there’s a little catch. The best way to check many of the conditions
is with the residuals, but we get the residuals only after we compute the regres-
sion. Before we compute the regression, however, we should check at least one of
the conditions.

So we work in this order:

1. Make a scatterplot of the data to check the Straight Enough Condition. (If the
relationship is curved, try re-expressing the data. Or stop.)

2. If the data are straight enough, fit a regression and find the residuals, e, and
predicted values, .

3. Make a scatterplot of the residuals against x or the predicted values. This
plot should have no pattern. Check in particular for any bend (which
would suggest that the data weren’t all that straight after all), for any thick-
ening (or thinning), and, of course, for any outliers. (If there are outliers,
and you can correct them or justify removing them, do so and go back to
step 1, or consider performing two regressions—one with and one without
the outliers.)

4. If the data are measured over time, plot the residuals against time to check for
evidence of patterns that might suggest they are not independent.

5. If the scatterplots look OK, then make a histogram and Normal probability
plot of the residuals to check the Nearly Normal Condition.

6. If all the conditions seem to be reasonably satisfied, go ahead with inference.

yN

For Example (continued)
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“Truth will emerge more
readily from error than from
confusion.”

—Francis Bacon
(1561–1626)
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Which Come First: the Conditions or the Residuals? 655

If our data can jump through all these hoops, we’re ready to do regression inference. Let’s see how
much more we can learn about body fat and waist size from a regression model.

Questions: What is the relationship between %Body Fat and Waist size in men? 
What model best predicts body fat from waist size, and how well does it do the job?

Regression InferenceSTEP–BY–STEP EXAMPLE

I have quantitative body measurements on 250
adult males from the BYU Human Performance
Research Center. I want to understand the re-
lationship between %Body Fat and Waist size.

Plan Specify the question of interest.

Name the variables and report the W’s.

Identify the parameters you want to
estimate.

Model Think about the assumptions and
check the conditions.

Make pictures. For regression inference,
you’ll need a scatterplot, a residuals plot,
and either a histogram or a Normal prob-
ability plot of the residuals.

Ç Straight Enough Condition: There’s no 
obvious bend in the original scatterplot of
the data or in the plot of residuals against
predicted values.

Ç Independence Assumption: These data
are not collected over time, and there’s no
reason to think that the %Body Fat of one
man influences the %Body Fat of another.

Ç Does the Plot Thicken? Condition: Neither
the original scatterplot nor the residual
scatterplot shows any changes in the
spread about the line.

Ç Nearly Normal Condition, Outlier Condi-
tion: A histogram of the residuals is
unimodal and symmetric. The Normal 
probability plot of the residuals is quite
straight, indicating that the Normal model
is reasonable for the errors.

(We’ve seen plots of the residuals already.
See Figures 27.5 and 27.6.)
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656 CHAPTER 27    Inferences for Regression

Under these conditions a regression model is
appropriate.

Choose your method.

Here’s the computer output for this regression:

Dependent variable is: %BF

R-squared = 67.8%

s 5 4.713 with 250 2 2 5 248 degrees of freedom

Variable Coeff SE(Coeff) t-ratio P-value
Intercept 242.734 2.717 215.7 ,0.0001

Waist 1.70 0.0743 22.9 ,0.0001

The estimated regression equation is

%Body Fat =  -42.73 + 1.70  Waist.

Mechanics Let’s just “push the button”
and see what the regression looks like.

The formula for the regression equation
can be found in Chapter 8, and the stan-
dard error formulas will be shown a bit
later, but regressions are almost always
computed with a computer program or
calculator.

Write the regression equation.

The for the regression is 67.8%. Waist size
seems to account for about 2/3 of the %Body
Fat variation in men. The slope of the regres-
sion says that %Body Fat increases by about
1.7 percentage points per inch of Waist size, on
average.

The standard error of 0.07 for the slope is
much smaller than the slope itself, so it looks
like the estimate is reasonably precise. And
there are a couple of t-ratios and P-values
given. Because the P-values are small, it ap-
pears that some null hypotheses can be
rejected.

R2Conclusion Interpret your results in
context.

More Interpretation We haven’t
worked it out in detail yet, but the output
gives us numbers labeled as t-statistics
and corresponding P-values, and we have
a general idea of what those mean.

(Now it’s time to learn more about regres-
sion inference so we can figure out what
the rest of the output means.)

Intuition About Regression Inference
Wait a minute! We’ve just pulled a fast one. We’ve pushed the “regression
button” on our computer or calculator but haven’t discussed where the
standard errors for the slope or intercept come from. We know that if we
had collected similar data on a different random sample of men, the slope
and intercept would be different. Each sample would have produced its
own regression line, with slightly different ’s and ’s. This sample-
to-sample variation is what generates the sampling distributions for the
coefficients.

There’s only one regression model; each sample regression is trying to
estimate the same parameters, and . We expect any sample to pro-
duce a whose expected value is the true slope, . What about its stan-
dard deviation? What aspects of the data affect how much the slope (and
intercept) vary from sample to sample?

b1b1

b1b0

b1b0

Simulation: Simulate the
Sampling Distribution of a
Regression Slope. Draw samples
repeatedly to see for yourself how
slope can vary from sample to
sample. This simulation
experiment lets you build up a
histogram to see the sampling
distribution.
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Intuition About Regression Inference 657

u Spread around the line. Here are two situations in which we might do regres-
sion. Which situation would yield the more consistent slope? That is, if we
were to sample over and over from the two underlying populations that these
samples come from and compute all the slopes, which group of slopes would
vary less?

y

x

y

x

FIGURE 27.8
Which of these scatterplots shows a
situation that would give the more con-
sistent regression slope estimate if we
were to sample repeatedly from its un-
derlying population?

y

x

y

x

FIGURE 27.9
Which of these scatterplots shows a
situation that would give the more con-
sistent regression slope estimate if we
were to sample repeatedly from the
underlying population?

A plot like the one on the right has a broader range of x-values, so it gives a more
stable base for the slope. We’d expect the slopes of samples from situations like
that to vary less from sample to sample. A large standard deviation of x, , pro-
vides a more stable regression.

sx

n 2 2?
For standard deviation (in
Chapter 4), we divided by

because we didn’t
know the true mean and had
to estimate it. Now it’s later
in the course and there’s
even more we don’t know.
Here we don’t know two
things: the slope and the
intercept. If we knew them
both, we’d divide by n and
have n degrees of freedom.
When we estimate both,
however, we adjust by
subtracting 2, so we divide
by and (as we will see
soon) have 2 fewer degrees
of freedom.

n - 2

n - 1

Clearly, data like those in the left plot give more consistent slopes.

Less scatter around the line means the slope will be more consistent from sample
to sample. The spread around the line is measured with the residual standard de-
viation, . You can always find in the regression output, often just labeled s.
You’re probably not going to calculate the residual standard deviation by hand.
As we noted when we first saw this formula in Chapter 8, it looks a lot like the
standard deviation of y, only now subtracting the predicted values rather than the
mean and dividing by instead of :

The less scatter around the line, the smaller the residual standard deviation and
the stronger the relationship between x and y.

Some people prefer to assess the strength of a regression by looking at rather 
than . After all, has the same units as y, and because it’s the standard devia-
tion of the errors around the line, it tells you how close the data are to our model.
By contrast, is the proportion of the variation of y accounted for by x. We say,
why not look at both?

u Spread of the x ’s: Here are two more situations. Which of these would yield
more consistent slopes?

R2

seR2
se

se = Ca
(y - yN)2

n - 2
.

n - 1n - 2

sese
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u Sample size. Here we go again. What about these two?

y

x

y

x

FIGURE 27.10
Which of these scatterplots shows a
situation that would give the more con-
sistent regression slope estimate if we
were to sample repeatedly from the
underlying population?

It shouldn’t be a surprise that having a larger sample size, n, gives more consis-
tent estimates from sample to sample.

Standard Error for the Slope
Three aspects of the scatterplot, then, affect the standard error of the regression
slope:

u Spread around the line: 

u Spread of x values: 

u Sample size: n

These are in fact the only things that affect the standard error of the slope. 
Although you’ll probably never have to calculate it by hand, the formula for the
standard error is

The error standard deviation, , is in the numerator, since spread around the
line increases the slope’s standard error. The denominator has both a sample size
term and , because increasing either of these decreases the slope’s stan-
dard error.

We know the ’s vary from sample to sample. As you’d expect, their sam-
pling distribution model is centered at , the slope of the idealized regression
line. Now we can estimate its standard deviation with . What about its
shape? Here the Central Limit Theorem and “Wild Bill” Gosset come to the rescue
again. When we standardize the slopes by subtracting the model mean and divid-
ing by their standard error, we get a Student’s t-model, this time with de-
grees of freedom:

b1 - b1

SE(b1)
' tn-2.

n - 2

SE(b1)
b1

b1

sx1n - 1

se

SE(b1) =

se

2n - 1 sx

.

sx

se

Activity: Regression Slope
Standard Error. See how 
is constructed and where the
values used in the formula are
found in the regression output
table.

SE(b1)

Simulation: x-Variance
and Slope Variance. You don’t
have to just imagine how the
variability of the slope depends
on the spread of the x’s.

NOTATION ALERT:

Don’t confuse the standard
deviation of the residuals,
with the standard error of the
slope, .The first measures
the scatter around the line, and
the second tells us how reliably
we can estimate the slope.

SE(b1)

se,
A SAMPLING DISTRIBUTION FOR REGRESSION SLOPES
When the conditions are met, the standardized estimated regression slope,

follows a Student’s t-model with degrees of freedom. We estimate the
standard error with

n - 2

t =

b1 - b1

SE(b1)
,
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n is the number of data values, and is the ordinary standard deviation of
the x-values.

sx

SE(b1) =

se

2n - 1 sx

, where se = Ca
(y - yN)2

n - 2
,

Regression Inference 659

Finding standard errorsFOR EXAMPLE

Recap: Recent terrestrial impact craters seem to show 
a relationship between age and size that is linear when 
re-expressed using logarithms (see Chapter 10).

Here are summary statistics and regression output.

Variable Count Mean StdDev
LogAge 39 20.656310 1.57682

LogDiam 39 0.012600 1.04104

Dependent variable is: LogDiam

R-squared = 63.6%

s = 0.6362 with 39 2 2 = 37 degrees of freedom

Variable Coefficient Se(coeff) t-ratio P-value
Intercept 0.358262 0.1106 3.24 0.0025

LogAge 0.526674 0.0655 8.05 < 0.0001

Questions: How are the standard error of the slope and the t-ratio for the slope calculated? (And aren’t you glad the software does this for you?)

Assuming no linear association (b1 = 0), t37 =

b1 - b1

SE(b1)
=

0.526674 - 0
0.0655

= 8.05

SE(b1) =

se

2n - 1 * sx
=

0.6362

239 - 1 * 1.57682
= 0.0655

What About the Intercept?
The same reasoning applies for the intercept. We could write

and use it to construct confidence intervals and test hypotheses, but often the
value of the intercept isn’t something we care about. The intercept usually isn’t
interesting. Most hypothesis tests and confidence intervals for regression are
about the slope.

Regression Inference
Now that we have the standard error of the slope and its sampling distribution,
we can test a hypothesis about it and make confidence intervals. The usual null
hypothesis about the slope is that it’s equal to 0. Why? Well, a slope of zero would
say that y doesn’t tend to change linearly when x changes—in other words, that
there is no linear association between the two variables. If the slope were zero,
there wouldn’t be much left of our regression equation.

So a null hypothesis of a zero slope questions the entire claim of a linear rela-
tionship between the two variables—and often that’s just what we want to know.
In fact, every software package or calculator that does regression simply assumes
that you want to test the null hypothesis that the slope is really zero.

b0 - b0

SE(b0)
' tn-2

Regression Inference. How big
must a slope be in order to be
considered statistically significant?
See for yourself by exploring
the natural sample-to-sample
variability in slopes.
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To test we find

This is just like every t-test we’ve seen: a difference between the statistic and
its hypothesized value, divided by its standard error.

For our body fat data, the computer found the slope (1.7), its standard error 

(0.0743), and the ratio of the two: (see p. 656). Nearly 23 standard 

errors from the hypothesized value certainly seems big. The P-value 
confirms that a t-ratio this large would be very unlikely to occur if the true slope
were zero.

Maybe the standard null hypothesis isn’t all that interesting here. Did you
have any doubts that %Body Fat is related to Waist size? A more sensible use of
these same values might be to make a confidence interval for the slope instead.

We can build a confidence interval in the usual way, as an estimate plus or mi-
nus a margin of error. As always, the margin of error is just the product of the stan-
dard error and a critical value. Here the critical value comes from the t-distribution
with degrees of freedom, so a 95% confidence interval for is

For the body fat data, , so that comes to , or an in-
terval from 1.55 to 1.85 %Body Fat per inch of Waist size.

1.7 ; 1.97 * 0.074t*248 = 1.970

b1 ; t *n-2 * SE(b1).

Bn - 2

(60.0001)

1.7 - 0
0.0743

= 22.9

tn-2 =

b1 - 0
SE(b1)

.

H0: b1 = 0,
What if the Slope Were 0?
If our prediction is

The equation
collapses to just Now
x is nowhere in sight, so y
doesn’t depend on x at all.

And would turn out to
be . Why? We know that

, but when
that becomes simply

. It turns out, then, that
when the slope is 0, the
equation is just ; at
every value of x, we always
predict the mean value for y.

yN = y

b0 = y
b1 = 0,
b0 = y - b1x

y
b0

yN = b0.
yN = b0 + 0x.

b1 = 0,

Interpreting a regression modelFOR EXAMPLE

Recap: On a log scale, there seems to be a
linear relationship between the diameter and
the age of recent terrestrial impact craters. We
have regression output from statistics software:

Dependent variable is: LogDiam

R-squared = 63.6%

s = 0.6362 with 39 2 2 = 37 degrees of freedom

Variable Coefficient Se(coeff) t-ratio P-value
Intercept 0.358262 0.1106 3.24 0.0025

LogAge 0.526674 0.0655 8.05 <0.0001
Questions: What’s the regression model, and what
can it tell us?

For terrestrial impact craters younger than 35 million years, the logarithm of Diameter grows linearly with the logarithm
of Age: log logAge. The P-value for each coefficient’s t-statistic is very small, so I’m quite
confident that neither coefficient is zero. Based on my model, I conclude that, on average, the older a crater is, the
larger it tends to be. This model accounts for 63.6% of the variation in logDiam.
Although it is possible that impacts (and their craters) are getting smaller, it is more likely that i’m seeing the ef-
fects of age on craters. Small craters are probably more likely to erode or become buried or otherwise be difficult to
find as they age. Larger craters may survive the huge expanses of geologic time more successfully.

Diam = 0.358 + 0.527

JUST CHECKING
Researchers in Food Science studied how big people’s mouths tend to be. They measured mouth volume by

pouring water into the mouths of subjects who lay on their backs. Unless this is your idea of a good time, it would be
helpful to have a model to estimate mouth volume more simply. Fortunately, mouth volume is related to height.
(Mouth volume is measured in cubic centimeters and height in meters.)

BOCK_C27_0321570448 pp3.qxd  11/29/08  6:54 PM  Page 660



Another Example 661

Another Example
Every spring, Nenana, Alaska, hosts a contest in which participants try to guess
the exact minute that a wooden tripod placed on the frozen Tanana River will fall
through the breaking ice. The contest started in 1917 as a diversion for railroad en-
gineers, with a jackpot of $800 for the closest guess. It has grown into an event in
which hundreds of thousands of entrants enter their guesses on the Internet3 and
vie for as much as $300,000.

Because so much money and interest depends on the time of breakup, it has
been recorded to the nearest minute with great accuracy ever since 1917. And be-
cause a standard measure of breakup has been used throughout this time, the data
are consistent. An article in Science4 used the data to investigate global warming—
whether greenhouse gasses and other human actions have been making the
planet warmer. Others might just want to make a good prediction of next year’s
breakup time.

Of course, we can’t use regression to tell the causes of any change. But we can
estimate the rate of change (if any) and use it to make better predictions.

Here are some of the data:

The data were checked and deemed suitable for
regression. Take a look at the computer output.

1. What does the t-ratio of 3.27 tell us about this 
relationship? How does the P-value help our 
understanding?

2. Would you say that measuring a person’s height
could reliably be used as a substitute for the wet-
ter method of determining how big a person’s
mouth is? What numbers in the output helped
you reach that conclusion?

3. What does the value of add to this discussion?se

Summar y of Mouth V olume
Mean 60.2704
StdDev 16.8777
Dependent variable is: Mouth V olume
R-squared = 15.3%
s 5 15.66 with 61 2 2 5 59 degrees of freedom

Variable Coefficient SE(coeff) t-ratio P-value
Intercept 244.7113 32.16 21.39 0.1697
Height 61.3787 18.77 3.27 0.0018

3 http://www.nenanaakiceclassic.com
4 “Climate Change in Nontraditional Data Sets.” Science 294 [26 October 2001]: 811.

WHO Years

WHAT Year, day, and hour of
ice breakup

UNITS x is in years since 
1900.

y is in days after 
midnight Dec. 31.

WHEN 1917–present

WHERE Nenana, Alaska

WHY Wagering, but pro-
posed to look at 
global warming

Activity: A Hypothesis
Test for the Regression Slope.
View an animated discussion 
of testing the standard null
hypothesis for slope.

Year 
(since 1900)

Breakup Date 
(days after Jan. 1)

17 119.4792
18 130.3979
19 122.6063
20 131.4479
21 130.2792
22 131.5556
23 128.0833
24 131.6319
25 126.7722
26 115.6688
27 131.2375
28 126.6840
29 124.6535

Year 
(since 1900)

Breakup Date 
(days after Jan. 1)

30 127.7938
31 129.3910
32 121.4271
33 127.8125
34 119.5882
35 134.5639
36 120.5403
37 131.8361
38 125.8431
39 118.5597
40 110.6437
41 122.0764
A A
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The slope of the regression gives the change in Nenana ice breakup date per year.

Questions: Is there sufficient evidence to claim that ice breakup times are changing? 
If so, how rapid is the change?

A Regression Slope t-TestSTEP–BY–STEP EXAMPLE

I wonder whether the date of ice breakup in Ne-
nana has changed over time. The slope of that
change might indicate climate change. I have
the date of ice breakup annually since 1917,
recorded as the number of days and fractions
of a day until the ice breakup.

: There is no change in the date of ice
breakup: 

: Yes, there is: 

Ç Straight Enough Condition: I have quanti-
tative data with no obvious bend in the
scatterplot.

b1 Z OHA

b1 = O
HO

Plan State what you want to know.

Identify the parameter you wish to esti-
mate. Here our parameter is the slope.

Identify the variables and review the W’s.

Hypotheses Write your null and alter-
native hypotheses.

Ç Independence Assumption: These data
are a time series, which raises my suspi-
cions that they may not be independent. To
check, here’s a plot of the residuals against
time, the x-variable of the regression:

Model Think about the assumptions and
check the conditions.

Make pictures. Because the scatterplot
seems straight enough, we can find and
plot the residuals.

I see a hint that the data oscillate up and
down, which suggests some failure of inde-
pendence, but not so strongly that I can’t

Usually, we check for suggestions that the
Independence Assumption fails by plot-
ting the residuals against the predicted
values. Patterns and clusters in that plot
raise our suspicions. But when the data
are measured over time, it is always a
good idea to plot residuals against time to
look for trends and oscillations.
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proceed with the analysis. These data are not a
random sample, so I’m reluctant to extend my
conclusions beyond this river and these years.

Ç Does the Plot Thicken? Condition: The
residuals plot shows no obvious trends in
the spread.

Ç Nearly Normal Condition, Outlier Condi-
tion: A histogram of the residuals is
unimodal and symmetric.

State the sampling distribution model.

Here’s the computer output for this regression:

Dependent variable is: Breakup Date

R-squared 5 11.3%

s 5 5.673 with 91 2 2 5 89 degrees of freedom

Variable Coeff SE(Coeff) t-ratio P-value
Intercept 128.950 1.525 84.6 ,0.0001

Year Since

1900 20.07606 0.0226 23.36 0.0012

The estimated regression equation is

Date = 128.95 - 0.076 YearSince1900.

Mechanics The regression equation can
be found from the formulas in Chapter 8,
but regressions are almost always found
from a computer program or calculator.

The P-values given in the regression 
output table are from the Student’s 
t-distribution on degrees of
freedom. They are appropriate for two-
sided alternatives.

(n - 2) = 89

−17.5

5

Residuals (days)

# 
of

 Y
ea

rs

10

15

20

−5.0 7.5

Under these conditions, the sampling distribu-
tion of the regression slope can be modeled by
a Student’s t-model with de-
grees of freedom.

I’ll do a regression slope t-test.

(n - 2) = 89

Choose your method.

The P-value of 0.0012 means that the associa-
tion we see in the data is unlikely to have
occurred by chance. I reject the null hypothesis,
and conclude that there is strong evidence
that, on average, the ice breakup is occurring
earlier each year. But the oscillation pattern in
the residuals raises concerns.

Conclusion Link the P-value to your de-
cision and state your conclusion in the
proper context.
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I am 95% confident that the ice has been
breaking up, on average, between 0.03 days
(about 40 minutes) and 0.12 days (about 
3 hours) earlier each year since 1900.

Interpret the interval Simply reject-
ing the standard null hypothesis doesn’t
guarantee that the size of the effect is
large enough to be important. Whether
we want to know the breakup time to the
nearest minute or are interested in global
warming, a change measured in hours
each year is big enough to be interesting.

MORE

A 95% confidence interval for is

or (-0.12,-0.03) days per year.
-0.076 ; (1.987)(0.0226)

b1 ; t *89 * SE(b1)

b1Create a confidence interval for the 
true slope

MORE

But is it global warming? So the ice is breaking up earlier. Temperatures are
higher. Must be global warming, right?

Maybe.
An article challenging the original analysis of the Nenana data proposed a possi-

ble confounding variable. It noted that the city of Fairbanks is upstream from Ne-
nana and suggested that the growth of Fairbanks could have warmed the river. So
maybe it’s not global warming.

Or maybe global warming is a lurking variable, leading more people to move to a
now balmier Fairbanks and also leading to generally earlier ice breakup in Nenana.

Or maybe there’s some other variable or combination of variables at work. We
can’t set up an experiment, so we may never really know.

Only one thing is for sure. When you try to explain an association by claiming
cause and effect, you’re bound to be on thin ice.5

5 How do scientists sort out such messy situations? Even though they can’t conduct an ex-
periment, they can look for replications elsewhere. A number of studies of ice on other bod-
ies of water have also shown earlier ice breakup times in recent years. That suggests they
need an explanation that’s more comprehensive than just Fairbanks and Nenana.

TI Tips Doing regression inference

The TI will easily do almost everything you need for inference for regression:
scatterplots, residual plots, histograms of residuals, and t-tests and confi-
dence intervals for the slope of the regression line. OK, it won’t tell you SE(b),
but it will give you enough information to easily figure it out for yourself.
Not bad.

As an example we’ll use data from Chance magazine (Vol. 12, No. 4, 1999), giving
times and temperatures for 11 of the top performances in women’s marathons
during the 1990s. Let’s examine the influence of temperature on the perfor-
mance of elite runners in marathons.

°F Min
44 142.7
46 142.1
47 143.4
50 143.6
51 144.0
52 143.4
54 142.4
55 143.1
57 143.7
60 143.4
65 143.4
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*Standard Errors for Predicted Values
Once we have a useful regression, how can we indulge our natural desire to pre-
dict, without being irresponsible? We know how to compute predicted values of y
for any value of x. We first did that in Chapter 8. This predicted value would be
our best estimate, but it’s still just an informed guess.

Test a Hypothesis About the Association
• Enter the temperatures (nearest degree Fahrenheit) in and the runners’ times

(nearest tenth of a minute) in .
• Check the scatterplot. It’s not obviously nonlinear, so go ahead.
• Under choose .
• Specify the two data lists (with ).
• Choose the two-tailed option. (We are interested in whether higher tempera-

tures enhance or interfere with a runner’s performance.)
• Tell it to store the regression equation in (

. . . remember?), then .

The TI creates so much information you have to scroll down to see it all! Look
what’s there.

• The calculated value of and the -value.
• The coefficients of the regression equation, and .
• The value of , our sample estimate of the common standard deviation of 

errors around the true line.
• The values of and .

Wait, where’s SE(b)? It’s not there. No problem—if you need it, you can figure
it out. Remember that the t-value is b divided by SE(b). So SE(b) must be b di-
vided by t. Here 

Create a Confidence Interval for the Slope
• Back to ; this time you want .
• The specifications for the data lists and the regression equation remain what

you entered for the hypothesis test.
• Choose a confidence level, say 95%, and .

Checking Conditions
Beware!!! Before you try to interpret any of this, you must check the conditions
to see if inference for regression is allowed.

• We already looked at the scatterplot; it was reasonably linear.
• To create the residuals plot, set up another scatterplot with (from

) as your . OK, it looks fairly random.
• The residuals plot may show a slight hint of diminishing scatter, but with so

few data values it’s not very clear.
• The histogram of the residuals is unimodal and roughly symmetric.

What Does It All Mean?
Because the conditions check out okay, we can try to summarize what we have
learned. With a P-value over 28%, it’s quite possible that any perceived rela-
tionship could be just sampling error. The confidence interval suggests the
slope could be positive or negative, so it’s possible that as temperatures in-
crease, women marathoners may run faster—or slower. Based on these 11 races
there appears to be little evidence of a linear association between temperature
and women’s performances in the marathon.

SE(b) = 0.0325 , 1.1358 = 0.0286.
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Now, however, we have standard errors. We can use those to construct a con-
fidence interval for the predictions and to report our uncertainty honestly.

From our model of %Body Fat and Waist size, we might want to use Waist size
to get a reasonable estimate of %Body Fat. A confidence interval can tell us how
precise that prediction will be. The precision depends on the question we ask,
however, and there are two questions: Do we want to know the mean %Body Fat
for all men with a Waist size of, say, 38 inches? Or do we want to estimate the
%Body Fat for a particular man with a 38-inch Waist without making him climb
onto the X-ray table?

What’s the difference between the two questions? The predicted %Body Fat is
the same, but one question leads to an answer much more precise than the other.
We can predict the mean %Body Fat for all men whose Waist size is 38 inches with
a lot more precision than we can predict the %Body Fat of a particular individual
whose Waist size happens to be 38 inches. Both are interesting questions.

We start with the same prediction in both cases. We are predicting the value
for a new individual, one that was not part of the original data set. To emphasize
this, we’ll call his x-value “x sub new” and write it .6 Here, is 38 inches. The
regression equation predicts %Body Fat as .

Now that we have the predicted value, we construct both intervals around
this same number. Both intervals take the form

Even the value is the same for both. It’s the critical value (from Table T or
technology) for degrees of freedom and the specified confidence level. The
intervals differ because they have different standard errors. Our choice of ruler
depends on which interval we want.

The standard errors for prediction depend on the same kinds of things as the
coefficients’ standard errors. If there is more spread around the line, we’ll be less
certain when we try to predict the response. Of course, if we’re less certain of the
slope, we’ll be less certain of our prediction. If we have more data, our estimate
will be more precise. And there’s one more piece: If we’re farther from the center
of our data, our prediction will be less precise. This last factor is new but makes
intuitive sense: It’s a lot easier to predict a data point near the middle of the data
set than far from the center.

Each of these factors contributes uncertainty—that is, variability—to the esti-
mate. Because the factors are independent of each other, we can add their vari-
ances to find the total variability. The resulting formula for the standard error of
the predicted mean value explicitly takes into account each of the factors:

Individual values vary more than means, so the standard error for a single
predicted value has to be larger than the standard error for the mean. In fact, the
standard error of a single predicted value has an extra source of variability: the
variation of individuals around the predicted mean. That appears as the extra
variance term, , at the end under the square root:

SE(yNn) = BSE2(b1) # (xn - x)2
+

s2
e

n
+ s2

e .

s2
e

SE(mN n) = BSE2(b1) # (xn - x)2
+

s2
e

n
.

n - 2
t*

yNn ; t*n-2 * SE.

yNn = b0 + b1xn

xnxn

666 CHAPTER 27    Inferences for Regression

6 Yes, this is a bilingual pun. The Greek letter is called “nu.” Don’t blame me; my co-author
suggested this.

n

For the Nenana Ice Classic,
someone who planned to
place a bet would want to
predict this year’s breakup
time. By contrast, scientists
studying global warming are
likely to be more interested
in the mean breakup time.
Unfortunately if you want to
gamble, the variability is
greater for predicting for a
single year.
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Keep in mind this distinction between the two kinds of confidence intervals:
The narrower interval is a confidence interval for the predicted mean value at

and the wider interval is a prediction interval for an individual with that 
x-value.
xn,

*Finding confidence intervals for predicted valuesFOR EXAMPLE

Let’s use our analysis to create confidence intervals for predictions about %Body Fat. From the data and the regression output we know:

Question 1: What’s a 95% confidence interval for the mean %Body Fat for all men with 38-inch waists?

For the regression model predicts

The standard error is

Putting it all together, the 95% confidence interval is:

I’m 95% confidence that the mean body fat level for all men with 38-inch waists is between 21.3% and 22.5% body fat.

Question 2: What’s a 95% prediction interval for the %Body Fat of an individual
man with a 38-inch waist?

The standard error is

The prediction interval is: 

I’m 95% confident that a randomly selected man with a 38-inch
waist will have between 12.6% and 31.2% body fat.

Notice how much wider this interval is than the first one. As we’ve known since Chap-
ter 18, the mean is such less variable than a randomly selected individual value.

21.9% ; 1.97(4.72)
21.9% ; 9.3%, or (12.6, 31.2)

SE(yNn) = B0.0742(38 - 36.3)2
+

4.7132

250
+ 4.7132

= 4.72%.

21.9% ; 1.97(0.32)
21.9% ; 0.63%, or (21.27, 22.53)

With 250 - 2 = 248 df, for 95% confidence t* = 1.97.

SE(mN n) = B0.0742(38 - 36.3)2
+

4.7132

250
= 0.32%.

yNn = -42.7 + 1.7(38) = 21.9%.

xn = 38

n = 250 x = 36.3 se = 4.713 SE(b1) = 0.074
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FIGURE 27.11
A scatterplot of %Body Fat vs. Waist size with a least
squares regression line. The solid green lines near the
regression line show the extent of the 95% confidence
intervals for mean %Body Fat at each Waist size. The
dashed red lines show the prediction intervals. Most of
the points are contained within the prediction intervals,
but not within the confidence intervals.
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*MATH BOX

So where do those messy formulas for standard errors of predicted values come from? They’re
based on many of the ideas we’ve studied so far. Start with regression, add random variables, then
throw in the Pythagorean Theorem, the Central Limit Theorem, and a dose of algebra. Mix well. . . .

We begin our quest with an equation of the regression line. Usually we write the line in the
form Mathematicians call that the “slope-intercept” form; in your algebra class you
wrote it as . In that algebra class you also learned another way to write equations of
lines. When you know that a line with slope m passes through the point , the “point-
slope” form of its equation is .

We know the regression line passes through the mean-mean point with slope , so
we can write its equation in point-slope form as Solving for yields

This equation predicts the mean y-value for a specific :

To create a confidence interval for the mean value we need to measure the variability in this 
prediction:

We now call on the Pythagorean Theorem of Statistics once more: the slope, , and mean, ,
should be independent, so their variances add:

The horizontal distance from our specific x-value to the mean, , is a constant:

Let’s write that equation in terms of standard deviations:

Because we’ll need to estimate these standard deviations using samples statistics, we’re really
dealing with standard errors:

The Central Limit Theorem tells us that the standard deviation of is . Here we’ll estimate

σ using , which describes the variability in how far the line we drew through our sample mean
may lie above or below the true mean:

And there it is—the standard error we need to create a confidence interval for a predicted mean
value.

When we try to predict an individual value of y, we must also worry about how far the true
point may lie above or below the regression line. We represent that uncertainty by adding an-
other term, e, to the original equation:

To make a long story short (and the equation a wee bit longer), that additional term simply adds
one more standard error to the sum of the variances:

SE1yN2 = B1SE21b1221xn - x2 +

s2
e

n
+ s2

e .

y = b1(xn - x) + y + e.

 = B1SE21b1221xn - x22 +

s2
e

n
.

 SE1mN y2 = B1SE21b1221xn - x22 + a
se

2n
b

2

se

s

1n
y

SE1mN y2 = 21SE21b1221xn - x22 + SE21y2.

SD1mN y2 = 21SD21b1221xn - x22 + SD21y2.

Var1mN y) = 1Var1b1))(xn - x22 + Var(y2.

xn - x

Var1mN y2 = Var1b11xn - x22 + Var1y2.

yb1

Var(mN y) = Var1b11xn - x2 + y2.

mN y = b11xn - x2 + y.

xnyN = b1(x - x) + y.
yNyN - y = b1(x - x).

b11x, y2
y - y1 = m1x - x12

1x1, y12
y = mx + b

yN = b0 + b1x.
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WHAT CAN GO WRONG?
In this chapter we’ve added inference to the regression explorations that we did in
Chapters 8 and 9. Everything covered in those chapters that could go wrong with re-
gression can still go wrong. It’s probably a good time to review Chapter 9. Take your
time; we’ll wait.

With inference, we’ve put numbers on our estimates and predictions, but these num-
bers are only as good as the model. Here are the main things to watch out for:

u Don’t fit a linear regression to data that aren’t straight. This is the most fundamental as-
sumption. If the relationship between x and y isn’t approximately linear, there’s no
sense in fitting a straight line to it.

u Watch out for the plot thickening. The common part of confidence and prediction inter-
vals is the estimate of the error standard deviation, the spread around the line. If it
changes with x, the estimate won’t make sense. Imagine making a prediction inter-
val for these data.

When x is small, we can predict y precisely, but as x gets larger, it’s much harder
to pin y down. Unfortunately, if the spread changes, the single value of se won’t pick
that up. The prediction interval will use the average spread around the line, with the
result that we’ll be too pessimistic about our precision for low x-values and too opti-
mistic for high x-values. A re-expression of y is often a good fix for changing spread.

u Make sure the errors are Normal. When we make a prediction interval for an individ-
ual, the Central Limit Theorem can’t come to our rescue. For us to believe the predic-
tion interval, the errors must be from the Normal model. Check the histogram and
Normal probability plot of the residuals to see if this assumption looks reasonable.

u Watch out for extrapolation. It’s tempting to think that because we have prediction
intervals, they’ll take care of all our uncertainty so we don’t have to worry about ex-
trapolating. Wrong. The interval is only as good as the model. The uncertainty our
intervals predict is correct only if our model is true. There’s no way to adjust for
wrong models. That’s why it’s always dangerous to predict for x-values that lie far
from the center of the data.

u Watch out for influential points and outliers. We always have to be on the lookout for a
few points that have undue influence on our estimated model—and regression is
certainly no exception.

u Watch out for one-tailed tests. Because tests of hypotheses about regression coefficients
are usually two-tailed, software packages report two-tailed P-values. If you are us-
ing software to conduct a one-tailed test about slope, you’ll need to divide the re-
ported P-value in half.

CONNECTIONS
Regression inference is connected to almost everything we’ve done so far. Scatterplots are essential
for checking linearity and whether the plot thickens. Histograms and normal probability plots
come into play to check the Nearly Normal condition. And we’re still thinking about the same at-
tributes of the data in these plots as we were back in the first part of the book.

Regression inference is also connected to just about every inference method we have seen for
measured data. The assumption that the spread of data about the line is constant is essentially the
same as the assumption of equal variances required for the pooled-t methods. Our use of all the
residuals together to estimate their standard deviation is a form of pooling.
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WHAT HAVE WE LEARNED?

In Chapters 7, 8, and 9, we learned to examine the relationship between two quantitative variables
in a scatterplot, to summarize its strength with correlation, and to fit linear relationships by least
squares regression. And we saw that these methods are particularly powerful and effective for mod-
eling, predicting, and understanding these relationships.

Now we have completed our study of inference methods by applying them to these regression
models. We’ve found that the same methods we used for means—Student’s t-models—work for re-
gression in much the same way as they did for means. And we’ve seen that although this makes
the mechanics familiar, there are new conditions to check and a need for care in describing the hy-
potheses we test and the confidence intervals we construct.

u We’ve learned that under certain assumptions, the sampling distribution for the slope of a re-
gression line can be modeled by a Student’s t-model with degrees of freedom.

u We’ve learned to check four conditions to verify those assumptions before we proceed with infer-
ence. We’ve learned the importance of checking these conditions in order, and we’ve seen that
most of the checks can be made by graphing the data and the residuals with the methods we
learned in Chapters 4, 5, and 8.

u We’ve learned to use the appropriate t-model to test a hypothesis about the slope. If the slope of
our regression line is significantly different from zero, we have strong evidence that there is an
association between the two variables.

u We’ve also learned to create and interpret a confidence interval for the true slope.
u And we’ve been reminded yet again never to mistake the presence of an association for proof of

causation.

Terms
Conditions for inference u 651. Straight Enough Condition for linearity. (Check that the scatterplot of y against x has linear

in regression (and checks form and that the scatterplot of residuals against predicted values has no obvious pattern.)
for some of them) u 652. Independence Assumption. (Think about the nature of the data. Check a residuals plot.)

u 652. Does the Plot Thicken? Condition for constant variance. (Check that the scatterplot shows
consistent spread across the range of the x-variable, and that the residuals plot has constant vari-
ance, too. A common problem is increasing spread with increasing predicted values—the plot
thickens!)

n - 2

Means Regression Slope

Parameter m b1

Statistic y b1

Population spread estimate sy 5 Å
g (y 2 y)2

n 2 1
se 5 B

g1y - yN22

n - 2

Standard error of the statistic SE(y) 5
sy

!n
SE(b1) 5

se

sx"n 2 1

Test statistic , tn 2 1

y 2 m0

SE(y)
, tn 2 2

b1 2 b1

SE(b1)

Margin of error ME = t*n -  1 * SE(y ) ME = t*n -  2 * SE(b1)

Inference for regression is closely related to inference for means, so your understanding of means
transfers directly to your understanding of regression. Here’s a table that displays the similarities:
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u 652. Nearly Normal Condition for Normality of the residuals. (Check a histogram of the 
residuals.)

Residual standard deviation 657. The spread of the data around the regression line is measured with the residual standard 
deviation, :

t-test for the regression slope 658, 662. When the assumptions are satisfied, we can perform a test for the slope coefficient. We
usually test the null hypothesis that the true value of the slope is zero against the alternative that it
is not. A zero slope would indicate a complete absence of linear relationship between y and x.

To test we find

where

n is the number of cases, and is the standard deviation of the x-values. We find the P-value from
the Student’s t-model with degrees of freedom.

Confidence interval for the 660. When the assumptions are satisfied, we can find a confidence interval for the slope parameter
regression slope ( ) from . The critical value, , depends on the confidence level specified and

on Student’s t-model with degrees of freedom.

Skills
u Understand that the “true” regression line does not fit the population data perfectly, but rather is

an idealized summary of that data.

u Know how to examine your data and a scatterplot of y vs. x for violations of assumptions that
would make inference for regression unwise or invalid.

u Know how to examine displays of the residuals from a regression to double-check that the
conditions required for regression have been met. In particular, know how to judge linearity and
constant variance from a scatterplot of residuals against predicted values. Know how to judge
Normality from a histogram and Normal probability plot.

u Remember to be especially careful to check for failures of the Independence Assumption when
working with data recorded over time. To search for patterns, examine scatterplots both of x
against time and of the residuals against time.

u Know how to test the standard hypothesis that the true regression slope is zero. Be able to state
the null and alternative hypotheses. Know where to find the relevant numbers in standard com-
puter regression output.

u Be able to find a confidence interval for the slope of a regression based on the values reported in
a standard regression output table.

u Be able to summarize a regression in words. In particular, be able to state the meaning of the
true regression slope, the standard error of the estimated slope, and the standard deviation of
the errors.

u Be able to interpret the P-value of the t-statistic for the slope to test the standard null hypothesis.

u Be able to interpret a confidence interval for the slope of a regression.

n - 2
t *n - 2b1 ; t*n - 2 * SE(b1)b

n - 2
sx

SE(b1) =

se

2n - 1 sx

, se = Ba
(y - yN)2

n - 2
,

t =

b1 - 0

SE(b1)

H0: b1 = 0,

se = Ba
(y - yN)2

n - 2
= B a

e2

n - 2
.

se
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y-variable

x-variable

may be
called

"Intercept"

R2

se

P-values
(two-tailed)

Dependent variable is %BF

R squared = 67.8%
s = 4.713 with 250 – 2 = 248 degrees of freedom

Variable Coefficient

b0 SE(b0)

df = n - 2

SE(Coeff) t-ratio Prob
Constant
waist

–42.7341
 1.69997

2.717
0.0743

– 15.7
 22.9

≤ 0.0001
≤ 0.0001

b1 SE(b1)
t =

b1
SE(b1)

t =
b0

SE(b0)

EXERCISES

1. Hurricane predictions. In Chapter 7 we looked at data
from the National Oceanic and Atmospheric Administra-
tion about their success in predicting hurricane tracks.

Here is a scatterplot of the error (in nautical miles) for pre-
dicting hurricane locations 72 hours in the future vs. the
year in which the prediction (and the hurricane) occurred:

REGRESSION ANALYSIS ON THE COMPUTER

All statistics packages make a table of results for a regression. These tables differ slightly from one package to
another, but all are essentially the same. We’ve seen two examples of such tables already.
All packages offer analyses of the residuals. With some, you must request plots of the residuals as you request
the regression. Others let you find the regression first and then analyze the residuals afterward. Either way, your
analysis is not complete if you don’t check the residuals with a histogram or Normal probability plot and a
scatterplot of the residuals against x or the predicted values.
You should, of course, always look at the scatterplot of your two variables before computing a regression.
Regressions are almost always found with a computer or calculator. The calculations are too long to do
conveniently by hand for data sets of any reasonable size. No matter how the regression is computed, the
results are usually presented in a table that has a standard form. Here’s a portion of a typical regression
results table, along with annotations showing where the numbers come from:

The regression table gives the coefficients (once you find them in the middle of all this other information), so we
can see that the regression equation is

and that the for the regression is 67.8%. (Is accounting for 68% of the variation in %Body Fat good enough
to be useful? Is a prediction ME of more than 9% good enough? Health professionals might not be satisfied.)
The column of t-ratios gives the test statistics for the respective null hypotheses that the true values of the
coefficients are zero. The corresponding P-values are also usually reported.

R2

%BF = -42.73 + 1.7 Waist

Activity: Regression on
the Computer. How fast is the
universe expanding? And how old
is it? A prominent astronomer
used regression to astound the
scientific community. Read the
story, analyze the data, and
interactively learn about each 
of the numbers in a typical
computer regression output table.

T
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