H. Geometry Summer Math Packet

Due by the 1st week of school.

These are all review topics of Algebra 1 and should be known at mastery level.

These topics will be tested the first week of school.

Simplify the following.

1.
$$4\sqrt{7} + 3\sqrt{5} + 5\sqrt{7}$$

2.
$$5\sqrt{10} - 3\sqrt{5} + 4\sqrt{10}$$

3.
$$4\sqrt{10} \cdot \sqrt{10}$$

4.
$$\sqrt{6}(-2\sqrt{2}-\sqrt{3})$$

5.
$$\sqrt[3]{48p^2q^3r^4}$$

$$6. \ \sqrt{x^6 y} \bullet \sqrt{x^5 y^4}$$

7.
$$\sqrt{10}(\sqrt{2}+4)$$

$$8. -3\sqrt{6p^2} \bullet 4\sqrt{12p}$$

$$9. \quad 5\sqrt{3x}\left(2\sqrt{x} - 3\sqrt{3x^3}\right)$$

$$10.\frac{\sqrt{32}}{\sqrt{2}}$$

11.
$$\frac{4\sqrt{15}}{4\sqrt{10}}$$

12.
$$\frac{2\sqrt{2}}{\sqrt{3}}$$

13.
$$\frac{-2}{2\sqrt{3}}$$

14. $-2x \cdot -4x^4y^3$

15.
$$3v^4 \cdot 4u^2$$

16. $-3yx^3 - 3yx^4 - 3x^4$

17.
$$3u^2 - 2v^2$$

18. $(-2)^2$

19.
$$(4^2)^4$$

20. $(2^3)^3$

21.
$$((-2)^3)^2$$

22. $(-x)^3$

23.
$$(-2n)^2$$

24. $(3b^4)^4$

25.
$$(-3v^2)^4$$

26. $(-4xy)^4$

27.
$$(-4xy^3)^3$$

28. $(-4y^3)^4$

Distribute & simplify:

29.
$$-8y(5y^2-3)$$

30.
$$(5a-2)(-2a+3)$$

31.
$$(3x+2)(2x-2)$$

32.
$$(2x-2)(3x+3)(4x-4)$$

Factor completely (Remember to Factor by Grouping if necessary or find a GCF):

33.
$$x^2 + 2x - 63$$

34.
$$y^2 + 15y - 3$$

35.
$$12x - 4$$

36.
$$9t^2 + 9t - 10$$

37.
$$y^2 + 12y + 36$$

38.
$$r^2 - 4$$

39.
$$t^2 - 25$$

40.
$$a^2 + 18a + 80$$

41.
$$2x^2 + 7x + 6$$

42.
$$6x^2 - 5x - 1$$

43.
$$5x^2 + 15x - 20$$

44.
$$25x^2 - 49y^2$$

45.
$$62x^2 + 18x$$

46.
$$3x^2 + 9x - 15$$

47.
$$10p^2 - 55p + 60$$

48. Is (-2, 4) a solution to the following system?

$$2x - 2y = 8$$

$$x + y = 4$$

49. Is (2, 1) a solution to the following system?

$$4x + y = 9$$

$$3x + 14y = 20$$

50. Find the equation of the line that is parallel to $y = -\frac{1}{2}x + 4$ and passes through (-2, 8).

51. Find the equation of the line that is parallel to 2x + 3y = 6 and passes through (4, 1).

For **# 52-55**, determine:

- a) if the lines are parallel, perpendicular, intersecting but not perpendicular, or coinciding.
- b) how many solutions the system has.

52.
$$2x - 3y = -12$$

$$-6x + 9y = 36$$

53.
$$8x - 4y = 12$$

$$y = 2x - 4$$

54.
$$2x - 4y = -16$$

$$-x + 2y = 8$$

55.
$$-6x + 2y = -2$$

$$y = -4x - 8$$

Solve using substitution.

$$y = x + 6$$

$$56. \quad y = x + 6$$
$$y = -4x - 9$$

$$8x + y = 2$$

57.
$$8x + y = 2$$
$$4x + 4y = 8$$

Solve using elimination.

58.
$$-x + 5y = -13$$
$$-4x - 5y = -2$$

$$-4x - 5y = -2$$

$$59. \quad 3x + 5y = -23 \\ -9x - 8y = 20$$

$$-9x - 8y = 20$$

Solve using any method you choose.

$$60. \quad 4x - 9y = -5 \\ 8x - 10y = 30$$

$$61. \quad 10x - 6y = 12$$
$$5x - 3y = 6$$

62.
$$62. \quad 8x + y = 6$$

63.
$$5x - 3y = -24$$
$$8x + y = -21$$

Solve the Application Problem

64. Nicole and Micaela are selling cheesecakes for a fundraiser. Customers can buy chocolate cheesecakes and cherry cheesecakes. Nicole sold 7 chocolate and 8 cherry cheesecakes for a total of \$122. Micaela sold 7 chocolate and 1 cherry cheesecakes for a total of \$52. Find the cost of a chocolate cheesecake and a cherry cheesecake.

SYSTEM OF EQUATIONS:

Chocolate:

Cherry:____