
Introduction and Motivation
• A quadriplegic is a person who is paralyzed from the neck down.
• Per the 2010 census, 250,000 Americans live with quadriplegia [1]
• Because of their disability, they can often feel socially isolated [4]
• Computers games help us communicate and connect while also having fun
• Quadriplegics, because of their disability, cannot use the computer in the conventional manner. [4]
• If a technology was developed to allow quadriplegics to play computer games, they may be relieved of some

of their social isolation.

Problem Statement and Success Criteria

User Constraint: C1—C3 quadriplegics cannot use
muscles below their neck. Only facial gestures and
eye movements work reliably

POV Single-Point Input

Examples Portal 2,
Minecraft

Chess, Angry Birds

Required
Keyboard
Functionality

8
commands:
W, A, S, D,
SPACE, LEFT
CLICK,
RIGHT
CLICK,
MIDDLE
MOUSE

Press/Movement,
Press/No Movement
No Press/Movement
No Press/No Movement

Required Mouse
Functionality

Pan Mouse Move mouse directly to
desire coordinates

Game Design Constraints

Category POV Single-point input

Functionality Pan mouse in x/y Set mouse position
to desired
coordinates

Accuracy (error) <1.5x <1.5x

Time to Complete <1.5x <1.5x

Cost <$500 <$500

User Exp. (Mins. w/o
discomfort)

10 mins. 10 mins.

Category POV Single-point input

Functionality 8 commands 1 command

Accuracy (error) <1.5x <1.5x

Time to Complete <1.5x <1.5x

Cost <$1000 <$1000

User Exp. (Mins. w/o
discomfort)

10 mins. 10 mins.

Keyboard Success Criteria

Mouse Success Criteria

References and Acknowledgements
References (abridged):
[1] Brault, Matthew W. Americans with Disabilities: 2010. Census Report. U.S. Census Bureau.
Washington D.C.: U.S. Department of Commerce: Economics and Statistics Administration, 2012.
Document. 22 September 2014.
[2] Cohn, Jeffrey F., et al. "Automated Face Analysis by Feature Point Tracking has high
Concurrent Validity with Manual FACS Coding." Psychophysiology 36 (1999): 35-42. Print. August
2014.
[3] Jacob, Robert J.K. "Eye Movement-Based Human-Computer Interaction Techniques: Toward
Non-Command Interfaces." (n.d.): 1-58. Print. September 2014.
—. "Eye Tracking in Advanced Interface Design." (n.d.): 1-54. Print. August 2014.
Karray, Fakhreddine, et al. "Human-Computer Interaction: Overview on the State of the Art."
International Journal on Smart Sensing and Intelligent Systems 1.1 (2008): 137-158. Print. August
2014.
[4] Myers, Brad A. "A Brief History of Human Computer Interaction Technology." ACM interaction
5.2 (1998): 44-54.
Streets, Graham. Quadriplegia - A View from the Chair. n.d. Web. 22 September 2014.
<http://www.streetsie.com/quadriplegia/>.
Image Credits (in order of appearance):
[5] Head-tracking Gyroscope and face-tracking mouse—photo taken by student

[6] A sip-and-puff controller—Adaptive Switch Laboratories
[7] Kinect  and Kinectv2  sensors—images created by Microsoft
[8] Full interface with Kinect™ and Eyetribe Tracker™—photo taken by student
[9] 9 facial structures—kpophairstyles.tumblr.com
[10] Diagram of a Neuron--biomedicalengineering.yolasite.com
[11] Neuron Action potential graph—wikipedia commons
[12]Neural Network Diagram, equation, notation, graph, and derivision—Ryan Harris
[13] CANDIDE3 wire mesh and animated facial models—courtesy of Microsoft
[14] EyeTribe Tracking box—courtesy of the EyeTribe 
[15]eyeball clipart—clipartpanda.com
[16] Images courtesy of (a)Unbalance, (b)Valve, and (c)Mojang
[17] Image created by student

Future Research
• Exploration of new device customization options

• Facial structure and user ability determine which Animation Units can be easily recognized

• For example, cheek puffing in a round face is hard to recognize and users differ in their ability to
move different facial muscles.

• Addition of more commands

• Kinect  provides raw 3D coordinates on 1000 facial points, but only 17 Animation Units.

• Explore possibility of using raw data to enable more commands

• Explore implementation of next-command prediction

Implications
• Everyday actions can be classified as Unimodal or Multimodal

• Unimodal: Turning on lights and changing television channels
• Multimodal: Driving a car (steering and gas/brake pedal) and using the computer

• Most accessibility research has gone into the creation of unimodal systems.
• However, our most important actions require multiple input channels

• The prototyped interface can be expanded to applications outside of gaming, including surfing
the internet and driving a car
• At its core, the interface recognizes facial gestures and eye movements and outputs them as

commands

Alternate Solutions

Market Survey

Eyegaze Edge

NoHands Mouse

InfoScan TS Elite

Jouse2

TrackerPro

Camera Mouse 2010

The most commonly
used devices today
involve a sip-and-
puff controller or a
modified joystick as
input for an
onscreen keyboard

Devices on the market

A sip-and-puff
controller.
Credit:
Adaptive
Switch
Laboratories

Wearable
devices
prototyped
in 2013-14

Type Sensors Human
interface

Physical
mounting

Advantages Disadvantages

Wearable
Device

MEMS
Gyroscope

Head
movement

Headphones,
Cap, Helmet,
Eye glass

Very reliable, lowest cost User must wear device, C1 – C4
patients cannot do large head
movements, Leads to user
fatigue

Potentiometer Tongue
movement

Helmet face
mask

Very reliable, clean data,
lowest cost

User must wear device,
Leads to user fatigue

Natural
User
Interface

Microphone Voice On PC User does not have to
wear a device

Too slow for game play.
Repetitive commands are
cumbersome

Kinect– RGB
+ IR camera

Facial
gestures

On PC User does not have to
wear a device, usable by
C1-C6 patients

Lighting must be optimized

Eye Tracking Eyeball
movements

On PC User does not have to
wear a device, usable by
C1-C6 patients

Requires focus and limits user’s
field of view

Alternative Development Options

In 2013-14 wearable devices were prototyped and tested. In 2014-15 a Natural User Interface based
on recognizing facial gestures and eye tracking will be prototyped and tested.

Conclusions
• Technology to enable quadriplegics to play computer games must rely on muscles above the neck
• A large number of popular games can be classified as follows:

• Point of View—8 keyboard commands and a mouse to pan the view
• Single input– Mouse to move to a specific point and a singe command to select

• Devices on the market do not meet the functionality, usability, and cost needs of the demographic
• A natural user interface that can recognize facial gestures and track eye movement can be

developed using commercially available technology
• A successful keyboard prototype was developed using Kinectv2 

• Select animation units provided by vision processing application were input to a trained neural
network to identify the command to send to the game

• The system met the speed criteria and accuracy requirements
• Selecting the appropriate animation units for the user’s facial structure is crucial to the success

of the device
• A successful mouse emulator was developed using an eye tracking device

• The device was usable for both view panning and point and select applications
• The accuracy of the mouse emulator was worse than a regular tactile mouse – but was

adequate for game playing
• The speed of the mouse emulator was close to that of the tactile mouse

• Neural networks enabled recognition of different variations of the same facial gesture and hence
better predict user intent. It also allows easy customization for a specific user

Background Research—Microsoft Kinect

IR
Projector

IR
Camera

RGB
Camera

IR
Projector

IR
Camera

RGB
Camera

Kinect 

Obtain Image
from RGB
Camera

Project known
pattern of IR

Dots

Project near-IR
beam array

Triangulate between
virtual image and
observed pattern

Measure time to
reflect off object

and return to sensor

Create depth
image map

Create 3D depth-
color overlay

Find
Extremities

Create
Skeleton

Find Face

Kinect v2 

Model Color Camera
res.

Depth
Camera res.

Depth Sense
method

Min. Depth Distance Vertical Field of
View

Cost

Kinect 640x480 320x240 Spread Dots 40cm 43˚ $299

Kinect v2 1920x1080 512x424 TOF 50cm – 10cm 60˚ $199

Task Options Chosen Solution

Choose facial
data to collect

Raw Facial Data (1000
points), CANDIDE 3
Animation Units

CANDIDE 3 Animation Units-pre-
processed data allows for high degree of
accuracy

Process facial
data

Hardcode expected values,
use machine learning

Machine learning - Device will trainable
and customizable

Send key cmds
to game

C# SendKeys libraries, PIE
sketch

PIE sketch - SendKeys is not compatible
with games using DirectX protocol

Animation Units

Jaw Opener

Left/Right Eye Blinking

Lip Pucker

Lip Stretcher

Right/Left mouth corner
pull

Right/left check puff

Right/left Eyebrow Raiser

Upper Lip Raiser

Mouth Corner Depressor

Face-Tracking Development (2 of
2)

C# Main WPF

Matlab Neural
Network

GlovePIE Sketch

Computer Game

User
Input

3. User does facial gesture
4. Neural network interprets

facial data
5. PIE sketch outputs command

1. Visual representations of facial
data collected from two test
subjects

2. All face data is warped to fit
CANDIDE 3 wireframe

④ ③

⑤

①

②

Face-Tracking Development

Capture
Image from

Kinect

Find Skelton
in Image

Find face in
image using

skeleton as guide

Face
tracked?

Send Key
command

No

Yes
Capture AU

values and send
to neural net

• Two-step process to find the best animation units (AUs) for the person’s facial
structure

1. Eliminate AUs which the user physically cannot execute
• Ex. Woman with a narrow face—9 AUs eliminated

2. Compare AU values when executing gesture to neutral face, prefer large
value changes. Ex. Comparing “Jaw Open” AU value when jaw is open vs.
closed

• Facial gestures are then derived based on the selected animation units.

Jaw Open
Cheek Puffs (L/R)
Eyebrow Raiser
Half-smile (L/R)
Jaw Slide (L/R)

Usable AUs

Mix, match, and
combine to form

inputs

Jaw Open
Slide Jaw Left

Raise Eyebrows
Slide Jaw Right

Puff Both Cheeks
Smile

Puff Right Cheek
Puff Left Cheek

Interface Inputs

Development and Optimization of a Multimodal Natural User Interface for Patients with
Severe Motor Disabilities

Task Options Chosen Solution

Program
the
network

Java, C#, or
MATLAB

MATLAB - Well-
documented , easy to
create neural
networks and
functions

Choose
type of
network
to use

Function
approx.,
clustering,
classification

Classification - The
network must decide
which of 9
expressions the user’s
face fits into

number of
hidden
layers

0 − ∞ 1 - For most
classification
problems, 1 hidden
layer is sufficient

number of
neurons
to use

Constructive
or
Pruning

Constructive -
MATLAB auto-
integrates new
neurons, does not
require modification
of the performance
error function.

Input Output

Neural net training
with 180 samples,
70% used for
training, 15% for
testing, and 15%
for validation

 //initialize matlab
matlab = new MLApp.MLApp();
 //Put data into the matlab workspace
matlab.PutWorkspaceData("input", "base", inputarray);
//execute the NN function nn, return result in a string.
result = (matlab.Execute("kinectv2NN(transpose(input))"));
//parse the 'result' string to get the command.

Integrating Matlab Neural Network with C# WPF
code

17 Animation Unit
Values

W
A
S
D

Spacebar
Left Click

Right Click
Middle Mouse
No Command

Neural Network Development

Left
and Up

Up Right and
Up

Left Do Nothing Right
Left
and

Down

Down Right and
Down

Error Sources Implications and Mitigation

Imperfect eye
tracking

Noise and “jitteriness” –corrected
through proper calibration

Saccades –
involuntary eye
movement

Sudden jumps in detected gaze –
reduced through user focus

Eye-Tracking Development

Point and Select games using EyeTracker™

mouseX = gazeManager.gazeData.X;
mouseY = gazeManager.gazeData.Y;

Point of View games using EyeTracker™

①

②

Gaze location detection is
accomplished by
measuring the distance
between the reflection of
IR light off the retina (1)
and the cornea (2).

POV games only require
the mouse to move in a
general direction, as
such they allow for a
much greater margin of
error and are less
affected by error sources

Point and Select games
are very location
dependent and have
small margins of error.
This makes them more
affected by error
sources

EyeTracker™ Outputs:
gazeManager.gazeData.X (x-coordinate of gaze location)
gazeManager.gazeData.Y (y-coordinate of gaze location)

The screen is
divided into 9
zones. If gaze is
in a zone, the
mouse moves
in the
corresponding
direction

For Point and Select games, the mouse
coordinates are set directly to the gaze location.

Keyboard Accuracy

Keyboard Speed

Mouse Accuracy

Mouse Speed

Time required to play through first 5 levels of
Portal 2 using face-tracking keyboard and
tactile mouse

Each command entered 30 times, amount of
correctly sensed commands is compared to
amount of incorrectly sensed commands

Matrix of randomly plotted points. User must
click points rapidly in order. Time and distance
from target to click location is recorded

Test subject must use device to look at 4
targets, 30 times in a random order. The
total time required to look at all 30
targets is recorded

S

Left
Click

Right
Click

W

A

D

Spacebar

Middle
Mouse

No
Command

Test Setup

• The feed-forward artificial neural network is a simplified model of the
real-life biological neuron found complex nervous systems

• The accumulation of neurotransmitters in the synaptic cleft is
modeled by the summation of inputs multiplied by their respective
weights

• The threshold in the biological neuron action potential graph is
modeled by the sigmoid transfer function

Background Research—Neural
Networks

Level Time (Face-Tracker) Time (Total)

1 75.38 103.86

2 98.96 102.35

3 114.6 103.81

4 154.59 134.23

5 136.06 114.5

Total 579.59† 558.75†

Kinect  Face-Tracker Speed

†In seconds

Commands

Seconds Per
Command Eye-
tracker

Seconds Per
Command
Tactile Mouse

30 2.8 1.4

Eye-tracker Mouse Speed

Data

Eye-tracker average error = 344
pixels (Point and Select games)

User Input Gesture

Kinect Output Values

AU value for
neutral face

AU value for
executed gesture

Subject Discovery Animation Unit Data* Keyboard Accuracy**

Boy
Wide
Face

Woman
Narrow
Face

Boy
Narrow
Face

Man
Wide
Face

AU value for neutral face

AU value for executed gesture

**In number of commands

correctly entered out of 30
User Input Gesture

Kinect Output Values *

Command ID Kinect Command ID Kinect

1 30 5 30

2 30 6 30

 3* - 7 30

4 30 8 30

Narrow Face Wide Face

Command ID Kinect Command ID Kinect

1 30 5 30

 2* - 6 27

3 30 7 28

4 30 8 28

Command ID Kinect Command ID Kinect

1 30 5 30

2 30 6* -

3 30 7 30

4 30 8 30

Command ID Kinect Command ID Kinect

1 30 5 30

2 30 6 30

3 30 7 30

4 30 8 30

Inputed AU Jaw Open
Jaw Slide

Right
Left Cheek

Puff

Left
Eyebrow
Lowerer

Left Half-
Smile

Right Half-
Smile

Right Cheek
Puff

Right
Eyebrow
Lowerer

Neutral Face 0.00 0.00 0.01 0.26 0.01 0.01 0.00 0.37

Jaw Open 0.48 0.15 0.18 0.14 0.15 0.41 0.20 0.21

Cheek Puffs 0.01 0.02 0.10 0.65 0.10 0.21 0.03 0.55

Eyebrow Raiser 0.01 0.06 0.03 0.44 0.02 0.06 0.02 0.38

Smile 0.00 0.04 0.02 0.34 0.70 0.92 0.01 0.39

Jaw Slide Right* 0.06 0.43 0.01 0.13 0.04 0.25 0.02 0.33

Inputed AU Jaw Open
Jaw Slide

Right
Left Cheek

Puff
Left Eyebrow

Raiser
Lip Corner
Puller Left

Lip Corner
Puller Right Lip Pucker

Right
Eyebrow
Lowerer

Neutral Face 0.00 0.16 0.05 0.61 0.11 0.18 0.29 0.27

Jaw Slide Right 0.02 0.34 0.02 0.56 0.02 0.05 0.49 0.14

Cheek Puff 0.00 0.21 0.44 0.56 0.01 0.67 0.64 0.19

Jaw Open 0.71 0.12 0.09 0.59 0.12 0.19 0.54 0.49

Eyebrow Raiser* 0.00 0.05 0.02 0.32 0.03 0.03 0.28 0.19

Smile 0.00 0.03 0.05 0.47 0.69 0.91 0.00 0.33

Lip Pucker 0.15 0.28 0.04 0.62 0.00 0.16 0.78 0.20

Inputed AU Jaw Open
Jaw Slide

Right
Left Cheek

Puff

Left
Eyebrow

Raiser
Left Half-

smile
Right half-

smile
Right cheek

puff

Right
Eyebrow

Raiser

Neutral Face 0.08 0.03 0.18 0.14 0.02 0.07 0.02 0.36

Jaw Open 0.75 0.05 0.11 0.11 0.02 0.30 0.02 0.40

Jaw Slide Right 0.22 0.11 0.19 0.15 0.02 0.11 0.04 0.29

Cheek Puff 0.00 0.03 0.63 0.08 0.01 0.07 0.40 0.20

Eyebrow Lowerer 0.07 0.06 0.03 0.23 0.05 0.03 0.02 0.05

Smile 0.16 0.11 0.36 0.25 0.97 0.99 0.05 0.41

Inputed AU Jaw Open
Jaw Slide
Right

Left Cheek
Puff

Left Eyebrow
Raiser

Left Half-
smile

Right half-
smile Lip Pucker

Right cheek
puff

Neutral Face 0.00 0.13 0.31 0.31 0.09 0.14 0.19 0.13

Jaw Open 0.74 0.15 0.30 0.16 0.02 0.10 0.27 0.31

Jaw Slide right 0.30 0.35 0.10 0.37 0.01 0.47 0.53 0.10

Left Cheek Puff* 0.01 0.36 0.45 0.16 0.00 0.75 0.81 0.05

Left Eyebrow Raiser 0.18 0.08 0.03 0.61 0.01 0.01 0.43 0.03

Left Half-smile 0.15 0.15 0.09 0.23 0.20 0.01 0.06 0.03

Right half-smile 0.00 0.23 0.09 0.38 0.19 0.97 0.10 0.02

Lip Pucker 0.06 0.18 0.04 0.25 0.23 0.44 0.22 0.02

Right cheek puff* 0.02 0.06 0.02 0.06 0.40 0.01 0.60 0.41

Inputed AU
Jaw

Open

Jaw
Slide
right

Left Cheek
Puff

Left
Eyebrow

Raiser
Left Half-

smile

Right
half-
smile

Right
cheek puff

Right
Eyebrow

Raiser

Neutral Face 0.01 0.02 0.13 0.22 0.01 0.23 0.01 0.12

Jaw Open 0.72 0.01 0.37 0.16 0.49 0.94 0.36 0.20

Jaw Slide Right 0.17 0.26 0.17 0.47 0.01 0.82 0.04 0.06

Cheek Puffs 0.07 0.02 0.39 0.17 0.01 0.15 0.12 0.18

Eyebrow Raiser 0.00 0.17 0.45 0.29 0.39 0.94 0.10 0.06

Smile 0.09 0.02 0.25 0.70 0.01 0.20 0.01 0.54

Image Credit [5]

Image Credit [6]

Kinect™ sensor array. Image Credit [7]

The full interface. Image Credit [8]

Examples of wide and narrow
facial structures. Image Credit [9]

Image Credit [13]

Image Credit [10]

Image Credit [12]

Image Credit [11]

Eyetribe™ Field of View. Image
Credit [14]

Image Credit [15]

Image Credit [15]

Image Credit [16b]

An example of a Point-and Select
game. Image Credit [16a]

The
interface
Inputs.
Image
Credit [13]

Image Credit [16b]

Image Credit [16c]

Problem Statement: Quadriplegics are not able to use the mouse or keyboard and hence cannot use the
computer to play games.

Image Credit [17]

Kinect Face-tracking Process

Kinect™ and Kinect v2™ Attributes

Face-tracking Keyboard Process

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=MjiWy9tJsBHOqM&tbnid=bTxUOUfbx0y4kM:&ved=0CAUQjRw&url=http://www.digitaltrends.com/computing/kinect-pc-sdk-to-support-skeleton-tracking-for-two-players-directional-mic-controls/&ei=QkcCU4TvDIGwqQH8oICgCw&bvm=bv.61535280,d.aWc&psig=AFQjCNFVfPsze6aXr_cgUhY6O4590g38kw&ust=1392744304457864

