
Basic ExpressBasic ExpressBasic ExpressBasic Express
Language ReferenceLanguage ReferenceLanguage ReferenceLanguage Reference

Version 2.1

2

 1998-2003 by NetMedia, Inc. All rights reserved.

Basic Express, BasicX, BX-01, BX-24 and BX-35 are trademarks of NetMedia, Inc.

Microsoft, Windows and Visual Basic are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

Adobe and Acrobat are trademarks of Adobe Systems Incorporated.

2.01.S

3

Contents
1 Introduction . 5

1.0 A simple program . 5

1.1 Main program . 5

1.2 Statement format. 5

1.3 Comment format . 6

1.4 Identifiers . 6

1.5 Modules . 6

2 Subprograms . 9

2.0 General . 9

2.1 Sub procedures . 9

2.2 Functions. 9

2.3 Passing parameters to subprograms 10

3 Control structures . 13

3.0 If-Then statement. 13

3.1 Do-Loop statement . 13

3.2 For-Next statement . 14

3.3 Select-Case statement . 15

3.3 GoTo statement . 16

4 Variables, constants and data types . 17

4.0 Data types . 17

4.1 Declarations . 18

4.2 Constants. 18

4.3 Numeric literals. 19

4.4 Enumeration types . 20

4.5 Converting data types . 22

4

4.6 Type declaration characters . 22

4.7 Arrays . 24

4.8 Persistent variables . 24

5 Expressions. 26

5.0 General. 26

5.1 Relational operators . 27

5.2 Logical operators . 27

5.3 Arithmetic operators . 27

5.4 String operators. 28

5.5 Operator precedence. 28

5.6 Assignment statements . 28

6 Unsigned types . 29

6.0 General . 29

6.1 Type conversions . 30

7 Strict vs. permissive syntax rules . 31

7.0 Compiler option . 31

7.1 Permissive rules . 31

8 Modules and Abstract Data Types . 32

9 Miscellaneous statements . 34

9.0 Attribute statement . 34

9.1 Option statement . 34

9.2 With statement . . 34

10 Restricted keywords . 35

11 Basic Express language FAQ . 36

12 Portability issues . 37

13 Index . 40

5

Introduction
A simple program

The following is a simple BasicX program:

Sub Main()

' This program reads a switch to control an LED.

 Const ButtonPin As Byte = 16
 Const LEDPin As Byte = 17

 ' Initialize pins.
 Call PutPin(ButtonPin, bxInputPullup)
 Call PutPin(LEDPin, bxOutputLow)

 Do
 ' Read switch and control LED.
 If (GetPin(ButtonPin) = 1) Then
 Call PutPin(LEDPin, bxOutputHigh)
 Debug.Print "On"
 Else
 Call PutPin(LEDPin, bxOutputLow)
 Debug.Print "Off"
 End If

 ' Pause 100 ms for button de-bounce.
 Call Delay(0.1)
 Loop

End Sub

The program runs in a continuous loop and reads a switch at a rate of several times per second. Each
time through the loop, depending on the state of the switch, an LED is turned on or off, and the text
strings “On” or “Off” are transmitted through a serial port.

The switch consists of a button connected to pin 16 of the BasicX system. An LED is connected to pin 17.

Main program

In the example shown above, the following line denotes the start of a procedure called Main:

Sub Main()

“Sub” is a keyword that is used to declare a procedure. Every program must have at least one procedure
called Main, which is where the program starts.

Statement format

A statement begins at the beginning of a line of text and terminates at the end of a line of text. In BasicX
you can have at most 1 statement per line.

6

In order to make a long statement easier to read, the statement can be extended to multiple lines by
adding an underscore line continuation character as the last character on the line to be continued.

A line continuation character must be preceded by one or more blanks or tabs, and it must be the last
character on a line. Nothing, including comments, can follow on the same line. Comments in particular
are not allowed to be extended in this manner.

Example:

 A = A + B + Eval(_
 C, D, E, F, _
 G, H, I)

String literals also can't be extended in this manner, although you can use concatenation operators to
extend a string to the next line. Both lines in the following example are equivalent:

 S = "Hello, world"

 S = "Hello, " & _
 "world"

Comment format

An apostrophe is used to denote a comment. Example:

 I = 32767 ' Comment

All characters to the right of the apostrophe are usually ignored by the compiler, unless the apostrophe is
embedded inside a string literal.

Identifiers

BasicX identifiers must start with a letter, and all other characters must be letters, digits or underscores.
An identifier can be up to 255 characters long, and all characters are significant.

Identifiers are not case sensitive. For example, identifiers xyz, XYZ and xYz are equivalent.

Modules

Unless your program is very short, it is often beneficial to split a program into smaller, more manageable
pieces that are easier to handle and understand. Smaller, bite-size chunks can be easier to digest than a
single monolithic mass. BasicX programs can be split into standard modules, or modules for short. A
BasicX module is a self-contained unit that is stored in a separate file.

This form of modularity is more sophisticated than include statements in other languages, or in older
dialects of Basic such as QuickBasic. An include statement is a relatively low-level construct that refers to
simple text substitution generated by a preprocessor. By contrast, a BasicX module is a higher-level unit
of self-contained code.

Encapsulation and data hiding -- modules make it easy to control which data and subprograms are
exposed to the outside world, and which are hidden inside the module. You can encapsulate data along
with the procedures that operate on the data. Reuse becomes easier -- if you want to take a proven
section of code and reuse it in another program, it's usually easier to do with a self-contained module than
with code extracted from a monolithic program.

7

We’ll talk more about encapsulation later when we cover abstract data types.

The keywords public and private allow you to control which entities are hidden and which are exposed. A
private subprogram can be called only from within the module in which it is declared. A public subprogram
can be called from anywhere in the program, including other modules. Similarly, a private variable can be
accessed only from within the module in which it is declared. A public variable can be accessed from
anywhere in the program, including other modules. Similar rules apply to private and public constants.

Module level code -- variables and constants that are public or private appear in module level code.
Module level code refers to code that doesn’t belong to any subprograms, and appears at the beginning
of a module.

Example of a module:

'---
Public A As Integer ' <-- Module level code
Private B As Single ' <-- Module level code
'---
Public Sub Main()

 Dim K As Integer ' <-- Local variable

 A = 1
 For K = 1 To 10
 A = A + 1
 Next
 B = CSng(A)

 Debug.Print "B^2 = "; CStr(Square(B))

End Sub
'---
Private Function Square(_
 ByVal X As Single) As Single

 Square = X ^ 2

End Function
'---

In this example, variable A and procedure Main are visible in all other modules. Variable B and function
Square are visible only from within this module. Variable K is a local variable visible only within procedure
Main.

Module level variables vs. local variables – module level variables like A and B retain their values
between subprogram calls. These variables are sometimes called static variables. Memory allocated to a
static variable is tied up for the life of a program.

By contrast, local variables like K do not retain their values between calls, and in fact cease to exist
between calls. Memory allocated to a local variable is reclaimed by the operating system as soon as you
return from the subprogram in which the variable is declared. Note that a BasicX local variable is
equivalent to an “automatic” variable in C.

8

Module names -- module name identifiers are derived from the file in which a module appears. The
module identifier consists of the filename without the extension. This means module filenames must be
legal Basic identifiers. If a file is treated as a module, the file must contain 1 and only 1 module.

More about procedure Main – as we mentioned earlier, every program must have at least one
procedure called Main, which is where the program starts.

This particular procedure must also be public. You can have more than one private procedure called
Main, as long as you don't have more than one Main per module. A single public Main is required,
however -- otherwise the program won't know where to start.

Caution – if you omit public/private qualifiers in module level code, defaults are used, but they are
inconsistent. Some entities are public by default and some are private. For example, subprograms default
to public, but variables default to private.

Because of this inconsistency, it is perhaps good practice to explicitly label module level entities as public
or private so you won’t have to remember the rules about what defaults to what.

9

Subprograms
General

A subprogram allows you to take a group of related statements and treat them as a single unit.

Subprograms consist of procedures and functions. The difference between a procedure and function is
that a function can appear as part of an expression, but a procedure must be called in a standalone
statement.

There is no specific limit to the nesting level of subprogram calls. The only limit is available RAM.
Subprogram calls are also allowed to be recursive.

Sub procedures

 [Private|Public] Sub procedure_name (arguments)
 [statements]
 End Sub

You call a procedure by using the optional Call keyword. You can exit a procedure by using an Exit Sub
statement. Example:

 Private Sub GetPosition(ByRef X As Single)

 Call ReadDevice(X)
 If (X > 100.0) Then
 Exit Sub
 End If
 X = X * X

 End Sub

When you call a procedure, the Call keyword is optional. If Call is omitted, the parentheses around the
actual parameters (if any) must also be omitted. For example, the following 2 statements are equivalent:

 Call GetPosition(X)
 GetPosition X

Functions

 [Private|Public] Function function_name (arguments) As type
 [statements]
 End Function

A function is a subprogram that is similar to a procedure. The difference is that you call a function by
using its name in an expression, followed by the function's argument list (if any) in parentheses.

The function returns a value, which can be defined by assigning to the function name inside the function
itself. In other words, you can treat the name as if it were a local variable, and you can usually read and
write to the name inside the function. One exception is for string functions, in which the function return is
write-only inside the function.

10

Example:

Public Function F(ByVal i As Integer) As Integer

 F = 2 * i ' This defines the function return.

 F = F * F ' You can also read from the function name.

End Function

You can also exit a function by using an Exit Function statement. Example:

Function F(ByVal i As Integer) As Single

 If (i = 3) Then
 F = 92.0
 Exit Function
 End If

 F = CSng(i) + 1.0

End Function

Function return types

Functions can return non-persistent scalar types or string types.

Example syntax for string functions:

 Function F() As String
 F = "Hello, world" ' F is write-only.
 End Function

For efficiency reasons, a string function return is write-only. That is, you can assign to the function return,
but you can't read it, use it in an expression or pass it to another subprogram. Every assignment to the
function return must be immediately followed by an "Exit Function" or "End Function" statement.

If a function returns an UnsignedInteger or UnsignedLong object, the first statement in the function must
be a Set statement. Example:

 Function F() As UnsignedInteger
 Set F = New UnsignedInteger
 [...]
 End Function

Passing parameters to subprograms

Parameters can be passed to a subprogram by reference (ByRef) or by value (ByVal).

Pass by reference -- if you pass a parameter by reference, any changes to the parameter will propogate
back to the caller. Pass by reference is the default.

Pass by value -- if you pass a parameter by value, no changes are allowed to propogate back to the
caller. With a few exceptions, if an argument is passed by value, a copy is made of the argument, and the
called subprogram operates on the copy. Changes made to the copy have no effect on the caller.

11

One exception is for string parameters passed by value. For efficiency reasons, a copy of the string is not
made. Instead, the string is write-protected in the called subprogram, which means you can neither
assign to it nor pass it by reference to another subprogram. You are allowed to pass it by value to another
subprogram, however.

The other exception is for types UnsignedInteger and UnsignedLong, which are treated similarly -- these
parameters are write-protected in called subprograms.

Actual vs. formal parameters -- the type and number of the actual parameters must match that of the
"formal" parameters (the formal parameters appear in the subprogram declaration). If there is a type
mismatch, the compiler will declare an error. It will not do implicit type conversions.

Example syntax:

 Sub Collate(ByVal I As Integer, ByRef X As Single, ByVal B As Byte)

In the following example, SortList is an array:

 Function MaxValue(ByRef SortList() As Byte, S As String) As Integer

Note that string S is passed by reference, which is the default.

Restrictions on passing mechanisms:

1. Scalar variables and array elements can be passed by value or by reference.

2. An array can be passed by reference only. The array must also be one-dimensional and have a
lower bound of one. Any other kind of array can't be passed at all, regardless of the passing
mechanism.

3. Numeric expressions and numeric literals can be passed by value but not by reference. The
same applies to boolean expressions and boolean literals.

4. Persistent variables can be passed by value only, and only after they've been converted to the
corresponding non-persistent type.*

5. If you use pass by value for types String, UnsignedInteger and UnsignedLong, the parameters
are write-protected inside the called subprograms, which means you're not allowed to change
their values or use them as For-Next loop counters. If you pass these parameters to another
subprogram, they must be passed by value, not by reference.

* Although BasicX generally does not do implicit type conversions, it will automatically convert a
persistent variable to the corresponding non-persistent type when the variable is passed as a subprogram
argument. For example, a PersistentInteger variable is converted to Integer.

Known bug – string functions should not be used in expressions that are passed as actual parameters to
other functions.

12

To summarize:

Parameter ByRef ByVal
Scalar variable Yes Yes
Array element Yes Yes
1D array, lower bound = 1 Yes No
Multidimensional array No No
Array with lower bound not 1 No No
Numeric expression No Yes
Numeric literal No Yes
Boolean expression No Yes
Boolean literal No Yes
Persistent variable No Yes

13

Control structures
If-Then statement

 If (boolean_expression) Then
 [statements]
 End If

 If (boolean_expression) Then
 [statements]
 Else
 [statements]
 End If

 If (boolean_expression) Then
 [statements]
 ElseIf (boolean_expression) Then
 [statements]
 [ElseIf (boolean_expression) Then]
 [statements]
 [Else]
 [statements]
 End If

Examples:

 If (i = 3) Then
 j = 0
 End If

 If (i = 1) Then
 j = 3
 ElseIf (i = 2) Then
 j = 4
 Else
 j = 5
 End If

Do-Loop Statement

Infinite loop:

 Do
 [statements]
 Loop

You can also add a "While" qualifier, which tests a boolean expression to determine whether to execute
the body of the loop. The loop continues as long as the expression is true. The test can be at the
beginning or end of the loop. If the test is at the end, the body is always executed at least once.

The "Until" qualifier is similar to "While", except the logic is reversed. That is, the loop is terminated rather
than continued when the boolean expression is true.

14

Examples:

 Do While (boolean_expression)
 [statements]
 Loop

 Do
 [statements]
 Loop While (boolean_expression)

 Do Until (boolean_expression)
 [statements]
 Loop

 Do
 [statements]
 Loop Until (boolean_expression)

Exit Do can be used to exit any of the Do-Loops. Do-Loops can be nested up to a level of ten.

Examples:

 Do
 j = j + 1
 If (j > 3) Then
 Exit Do
 End If
 Loop

 Do While (j < 10)
 j = j + 1
 Loop

 Do
 j = j + 1
 Loop Until (j <= 10)

For-Next Statement

A For-Next statement can be used to execute a loop a specific number of times.

 For loop_counter = start_value To end_value [Step 1 | -1]
 [statements]
 Next

The loop runs from start_value to end_value in steps of +1 or -1. If this gives a zero or negative count, the
loop is not executed at all.

Loop_counter must be a discrete type. Also, loop_counter, start_value and end_value must all be the
same type. Both start_value and end_value can be expressions.

Loop counters must be local variables, and you are not allowed to change a counter inside the loop. In
other words, a counter is treated as if it were a constant within the loop. If you want to pass the counter to
a subprogram, you must pass it by value. Pass by reference is not allowed -- otherwise the called
subprogram could change the counter indirectly.

15

At the end of a For-Next loop, the counter is assumed to be undefined. Accordingly, the scope of each
counter is limited to the loop to which it belongs, with the exception that multiple non-nested loops are
allowed to share the same counters.

In other words, you can't use loop counters outside of their loops.

"Exit For" can be used to exit a For-Next loop.

For-Next loops can be nested up to a level of ten.

Examples:

 For i = 1 To 10
 j = j + 1
 Next

This loop is executed ten times, with i being incremented each time.

The next example illustrates an Exit-For statement. The loop counter is decremented, and the maximum
number of iterations is ten.

 For i = 10 To 1 Step -1
 j = j - 1
 If (j < 3) Then
 Exit For
 End If
 Next

Select-Case Statement

A Select-Case statement can be used to select between a list of alternatives. Syntax:

 Select Case test_expression
 Case expression_list1
 [statements]
 [Case expression_list2]
 [statements]
 [Case Else]
 [statements]
 End Select

The test_expression is evaluated once, at the top of the loop. The program then branches to the first
expression_list that matches the value of test_expression, and the associated block of statements is
executed.

If no match is found, the program branches to the optional Case Else statement, if present. If there is no
Case Else, the program branches to the statement following the End Select statement.

The test_expression must be a discrete, non-string type (boolean or discrete numeric). Each
expression_list choice must have the same type as test_expression.

16

Example:

 Select Case BinNumber(Count)
 Case 1
 Call UpdateBin(1)
 Case 2
 Call UpdateBin(2)
 Case 3, 4
 call EmptyBin(1)
 call EmptyBin(2)
 Case 5 To 7
 Call UpdateBin(7)
 Case Else
 Call UpdateBin(8)
 End Select

GoTo Statement

A GoTo branches unconditionally to the specified label. Example:

 GoTo label_name

label_name:

Labels must be followed by a colon.

17

Variables, constants and data types
Data types

 Type Storage Range

 Boolean 8 bits True .. False

 Byte 8 bits 0 .. 255

 Integer 16 bits -32 768 .. 32 767

 Long 32 bits -2 147 483 648 .. 2 147 483 647

 Enumeration 8 bits 0 .. 255

 Single 32 bits -3.402 823 E+38 .. 3.402 823 E+38

 String Varies 0 to 64 characters

 BoundedString Varies 0 to 64 characters

String storage -- there are 3 kinds of strings -- variable-length, fixed-length, and bounded. The maximum
allowable length of any of the strings depends on the compiler setting. The selectable range is 1 to 64
characters, with a default of 64.

The storage required for a fixed-length string is 2 bytes plus the number of characters specified in the
declaration, up to the user-defined maximum. A variable length string always requires a constant storage,
which is 2 bytes plus the user-defined maximum. A bounded string requires the declared length plus 2
bytes for storage.

In this example, it is assumed that the compiler is set to a 45 character limit:

 ' Fixed-length string, requires 2 + 5 = 7 bytes of storage.
 Dim A As String * 5

 ' Variable-length string, requires 2 + 45 = 47 bytes of storage.
 Dim B As String

Bounded strings – syntax is as follows:

 Dim B As BoundedString_N ’ Where N is the maximum length.

Examples:

 Dim A As BoundedString_10 ’ Allows up to 10 characters.
 Dim A As BoundedString_64 ’ Allows up to 64 characters.

18

Declarations

All variables must be declared before they're used. Implicit declarations are not allowed.

For variables declared in module-level code:

 [Public | Private | Dim] variable As type

Public variables are global and visible throughout the entire program. Private variables are visible only in
the module in which they appear. The default is private – that is, if Dim is used for a module level
variable, the variable is private.

For variables declared inside a subprogram:

 Dim variable As type

Variables declared inside a subprogram are visible only inside the subprogram. Examples:

 Public Distance As Integer ' Module-level variable, global
 Private Temperature As Single ' Module-level variable, local to module

 Sub ReadPin()
 Dim PinNumber As Byte ' Variable is local to this subprogram
 End Sub

Strings can have a fixed or variable length. Example syntax:

 Dim S1 As String ' Variable length
 Dim S2 As String * 1 ' 1-character string
 Dim S2 As String * 64 ' 64-character string

A variable length string can hold 0 to 64 characters, depending on the compiler setting.

Constants

For constants declared in module-level code:

 [Public | Private] Const constant_name As type = literal

The default is private.

For constants declared inside a subprogram:

 Const constant_name As type = literal

Examples:

 Const Pi As Single = 3.14159
 Private Const RoomTemperature As Single = 70.0
 Public Const MaxSize As Byte = 20
 Const SwitchOn As Boolean = True, SwitchOff As Boolean = False

19

Numeric literals

Decimal integer examples:

 1
 -1
 10
 255

Note that integer numeric literals are not allowed to have a decimal point.

Decimal floating point examples:

 1.0
 -0.05
 1.53E20
 -978.3E-3

Hexadecimal integer examples:

 &H3
 &HFF
 &H7FFF ' 32767
 -&H8000& ' -32768 (note trailing ampersand)

Trailing ampersands are required for hexadecimal numbers in range &H8000 to
&HFFFF (32 768 to 65 535).

Binary constants:

 bx00000001 ' 1
 bx00001111 ' 15
 bx11111111 ' 255

Binary constants have a "bx" prefix followed by an 8-digit binary number. Strictly speaking, these entities
are not numeric literals, but are treated as equivalent to symbolic constants of type Byte.

20

Enumeration types

Sometimes it is useful to have variables whose values can be referred to by name rather than by number.
Although it is possible to use named constants for this purpose, it is often more useful to define a
separate type with a limited set of values. This is what enumeration types are for.

Enumeration types must be declared in module level code. Syntax:

 [Public | Private] Enum name
 member1 [= constant]
 member2 [= constant]
 ...
 End Enum

The public/private keywords are optional. If they are omitted, the enumeration type is public by default.

Example:

 Public Enum Color
 Red
 Green = 3
 Blue
 End Enum

Note that you can optionally specify numeric values for each member. If no number is specified for a
member, the value is automatically assigned, starting at 0, and incrementing by 1 greater than the
immediately preceding value. The allowable numeric range is 0 to 255.

In the example above, Red is numerically 0, Green is 3 and Blue is 4.

If you assign numeric values yourself, the numbers must be in ascending order, and no 2 values can be
the same.

Operations on enumeration types

Enumeration types are not numeric types, and there is a limited set of operations that are legal with
enumeration types. The following operations are legal:

 Relational
 =
 <>
 >
 <
 >=
 <=
 Assignment
 =
 Type conversions

Arithmetic operations in particular are not allowed for enumeration types, since it doesn’t usually make
sense to do arithmetic on enumeration values. For example, multiplying Green by Blue doesn’t usually
make sense.

Similarly, bitwise logical operations are not defined for enumeration types, nor are unary plus or unary
minus operators.

21

Because of BasicX’s strong typing, there are no implicit type conversions allowed between enumeration
types and other types. But explicit type conversions can be used whenever it is necessary to get at
underlying numerical values. The following example converts to an integer type:

 Dim N As Integer, C As Color

 C = Blue
 N = CInt(C)

Here, N is assigned the underlying value of Blue, which is 4.

You can also go in the opposite direction, and convert from numeric to enumeration type. There are two
ways of doing this – the CType function, and the ToEnum function, where Enum is the type name.
Example code:

 Public Enum ParityType
 Even
 Mark
 None
 Odd
 Space
 End Enum

 Public Sub Main()

 Dim N As Integer, Parity As ParityType

 N = 1
 Parity = ToParityType(N)
 Debug.Print "Parity = "; CStr(Parity) ' Parity = 1 (Mark)

 N = 3
 Parity = CType(N, ParityType)
 Debug.Print "Parity = "; CStr(Parity) ' Parity = 3 (Odd)

 End Sub

Caution – the compiler will not check for illegal values if you use type conversions to assign to an
enumeration variable.

Ordering. Since enumeration values must be in ascending order, relational expressions also apply to the
ordering of the list. For example, if A and B are variables of the same enumeration type, and if A < B, then
A must precede B on the list.

22

Converting data types

 Function Result

 CBool Boolean
 CByte Byte
 CInt Integer
 CLng Long
 CSng Single
 CStr String
 CType Enumeration
 FixB Byte
 FixI Integer
 FixL Long
 ToEnum Enumeration (Enum is type name)

CBool allows only a Byte type as an operand.

FixB, FixI and FixL allow only floating point types as operands. These three functions use truncation to
convert to discrete types (see also Fix, which is similar but returns a floating point value).

The other functions use any numeric types as operands, but with the following difference -- when CByte,
CInt and CLng are used with floating point operands, "statistical rounding" is used. This means the
number is converted to the nearest integer, unless the number is exactly halfway between two integers, in
which case the nearest even integer is returned. Examples:

 F CInt(F)

 1.3 1
 1.5 2
 2.3 2
 2.5 2
 2.7 3
 3.5 4
 -1.5 -2
 -2.5 -2

Type declaration characters

For floating point numbers, the exclamation point (!) and pound sign (#) are allowable as type declaration
characters, but only if they replace a trailing ".0" in floating point numeric literals.

For example, for the floating point number 12.0, all of the following representations are equivalent:

 12.0
 12!
 12#

In VB and other Basic dialects, (!) signifies single precision, and (#) signifies double precision. BasicX
treats both as single precision, although this may change if double precision is added to the language.

23

Hexadecimal numeric literals in range &H8000 to &HFFFF (32 768 to 65 535) are required to have
ampersand type declaration characters.

It is illegal to append type declaration characters to variable names, or to numeric literals with fractional
parts. For example:

 ' All of these are illegal:
 X!
 X#
 12.5!
 12.5#
 I&
 255&

24

Arrays

Arrays can be declared for all data types except strings or other arrays. Example syntax:

 Dim I(1 To 3) As Integer, J(-5 To 10, 2 To 3) As Boolean

 Dim X(1 To 2, 3 To 5, 5 To 6, 1 To 2, 1 To 2, 1 To 2, _
 1 To 2, -5 To -4) As Single

Arrays can have 1 to 8 dimensions. The upper bound of each index must be declared, and the lower
bound is optional. If the lower bound is missing, it defaults to 0. As an example, both the following arrays
have the same dimensions and require the same amount of storage:

 Dim A(0 To 3, 0 To 4) As Byte
 Dim B(3, 4) As Byte

If you want to pass an array as an argument to a subprogram, the array must be one-dimensional and
have a lower bound of 1. For example:

 Dim I(1 To 5) ' Can be passed to subprogram
 Dim J(0 To 5) ' Can't be passed – lower bound is not 1
 Dim K(1 To 2, 1 To 3) ' Can't be passed – array is not 1D

The memory available for an array is limited by the RAM or EEPROM memory size. In other words, an
array can’t be larger than the physical memory in the system. In addition, there is a 32 KB upper limit for
the total amount of memory used by an array. That translates to 32 K elements for Boolean and Byte
arrays, 16 K elements for Integer arrays, and 8 K elements for Long and Single arrays.

Warning -- there are neither compile time nor runtime checks for array index overflows. If an index
overflow occurs, results are undefined.

Ordering of array elements -- multidimensional arrays are stored in memory using column-major
ordering. Using a 2D array as an example:

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

The array is actually stored in memory in the following order, where the first index varies most rapidly:

A1,1 A2,1 A3,1 A1,2 A2,2 A3,2 A1,3 A2,3 A3,3

Persistent Variables

Persistent variables are stored in EEPROM memory. The variables retain their values after power is
turned off. In a sense, persistent variables behave as if they are written to a solid-state disk.

Persistent variables must be declared at module level and are not allowed as local variables. Declaration
syntax:

 [Public | Private | Dim] variable As New persistent_type

25

Where persistent_type is:

 PersistentBoolean|PersistentByte|PersistentInteger|
 PersistentLong|PersistentSingle

Example:

 Public I As New PersistentInteger, B As New PersistentByte
 Private X As New PersistentSingle, BL As New PersistentBoolean
 Dim L As New PersistentLong

The ordering of persistent variables in EEPROM memory is important if you want the location of each
variable to be the same after cycling power on and off. Otherwise, two or more variables may be
interchanged without the program knowing about it.

In order to guarantee the ordering of persistent variables, 3 rules should be followed:

1. All persistent variables should be declared in one module.

2. The ordering of declarations of persistent variables must match the order in which the variables
are first accessed at runtime. In this context, "accessed" means either a read or write operation.

3. All persistent variables should be private.

Examples:

 Option Explicit

 Private I As New PersistentInteger, J As New PersistentInteger

 Private Sub Main()

 Call Init

 End Sub

 Private Sub Init()

 Dim K As Integer

 ' Dummy reads.
 K = I
 K = J

 End Sub

In this example, procedure Init should be called before any other use of persistent variables I and J. If you
reverse the order of assignment statements in Init without also reversing the order in which I and J are
declared, the EEPROM ordering is undefined.

Ordering is also undefined if you declare persistent variables in more than one module.

26

Expressions
General

BasicX uses strong typing, which means the following -- binary operators must operate on equivalent
types, mixed-mode arithmetic is not allowed, both sides of an assignment statement must be of the same
type, and each argument passed to a subprogram must have the correct type. For example:

 Dim I As Integer, X As Single
 I = X ' Illegal -- type mismatch

The above assigment statement is illegal since I and X are of different types. The statement could be
made legal by using an explicit type conversion:

 I = CInt(X)

Numeric literals are classified as either universal real or univeral integer. A decimal point in a numeric
literal makes it universal real. Otherwise the number is treated as a universal integer.

Examples:

 Dim B As Byte, I As Integer, X As Single, BB As Boolean, L As Long

 B = 5 ‘ Legal
 I = 5 ‘ Legal

 I = 32768 ‘ Illegal -- overflow
 I = 1.5 ‘ Illegal -- type mismatch
 I = CInt(1.5) ‘ Legal after explicit type conversion

 L = CLng(I) ‘ Legal after explicit type conversion

 X = 5.0 ‘ Legal
 X = 5 ‘ Illegal -- type mismatch
 X = CSng(5) ‘ Legal after explicit type conversion
 X = 5. ‘ Illegal (missing zero after decimal point)
 X = .5 ‘ Illegal (missing zero in front of decimal point)

 BB = True ‘ Legal
 BB = 0 ‘ Illegal – type mismatch

Known Bugs

In expressions, the compiler tends to be overly permissive in allowing numeric literals that exceed range
constraints for the expression type. For example, Byte expressions are allowed to have numeric literals in
range -32 768 to 32 767 instead of the correct range 0 to 255.

27

Relational operators

 Equality =
 Inequality <>
 Less <
 Greater >
 Less or equal <=
 Greater or equal >=

Relational operators yield a Boolean type.

The equality and inequality operators can be used with operands of any type. The other operators can be
used with operands of any type except Boolean.

Known bug – string functions should not be used in relational expressions.

Logical operators

 And
 Or
 Not
 Xor

Logical operators require operands of Boolean type or unsigned discrete type (Byte, UnsignedInteger or
UnsignedLong). The resulting type matches that of the operands. Bitwise logical operations are done if
the operands are numeric types.

Arithmetic operators

 Addition +
 Subtraction -
 Multiplication *
 Division (float) /
 Division (integer) \
 Exponentiation ^
 Modulus Mod
 Absolute value Abs

Arithmetic operations require numeric operands. Note that division operations use separate operator
symbols for floating point and discrete operands.

For exponentiation operations, the mantissa must be of type Single, and the exponent must be of type
Single or Integer. The allowable range for the exponent is +/-32767.0.

Warning -- there are no runtime checks for numeric overflow. If overflow occurs, results are undefined.

Known bug – For floating point types, adding 0.0 to 0.0 returns a small but nonzero value (about 10-38).

28

String operators

 Concatenation &

Strings can be joined by using concatenation operations. Generally, if the destination string is larger than
the resulting string, the string is left-justified and blank-filled. If the destination string is smaller, the string
is truncated.

Operator precedence

 (Highest) [1] ^
 [2] Not

[3] * \ / Mod And
[4] + - Or Xor &

 (Lowest) [5] = > < <> <= >=

Assignment statements

 i = expression

The types of both sides of an assigment statement must match. No implicit type conversions are done.
Examples:

 Dim I As Integer, A As Single, X As Single, J As Integer
 Const Pi As Single = 3.14159265

 I = 3 + CInt(Log(145.0))

 A = Sin(Pi/2.0) + Pi

 X = CSng(I) / 3.0

 J = CInt(X) \ 3 ' Note integer division

29

Unsigned types
General

The following unsigned integer types are provided:

 Type Storage Range

 Byte 8 bits 0 .. 255

 UnsignedInteger 16 bits 0 .. 65 535

 UnsignedLong 32 bits 0 .. 4 294 967 295

UnsignedInteger and UnsignedLong types are actually treated as classes, which means the syntax for
declaring variables (actually objects) is slightly different from other types such as Byte, Integer and Long.

These are the rules for UnsignedInteger and UnsignedLong objects:

1. If you want to declare unsigned objects as local or module-level variables, you need to use the New
keyword. Examples:

 Dim I As New UnsignedInteger, L As New UnsignedLong
 Public ui As New UnsignedInteger, j As New UnsignedLong

The New keyword is not required in subprogram parameter lists, however:

 Private Sub S(ByRef I As UnsignedInteger)

2. Functions that use unsigned object returns must have a Set statement as the first line of the function.

Example:

 Function F() As UnsignedInteger
 Set F = New UnsignedInteger
 F = 65535
 End Function

3. Unsigned objects are not allowed in Const statements.

4. If you pass an unsigned object by value, the object is treated as if it were write-protected within the
called subprogram. That means you can't assign to the object, use it as a loop counter, or pass it by
reference to another subprogram.

A number of operating system calls that use integer arguments actually treat the arguments as unsigned
types. These calls typically involve time delays, pin I/O and networking. The calls are generally
overloaded, which means you can choose to use either signed or unsigned types. For system calls, the
advantage to unsigned types is they allow access to the full range of values.

30

Type conversions:

 CuInt Converts any discrete type to UnsignedInteger
 CuLng Converts any discrete type to UnsignedLong
 FixUI Truncates floating point type, converts to UnsignedInteger
 FixUL Truncates floating point type, converts to UnsignedLong

Known Bugs:

1. The following arithmetic operations are not allowed for UnsignedLong types:

Multiply
Divide

 Mod

2. Portability issue -- if an UnsignedInteger or UnsignedLong is used as a formal parameter, and if the
object is passed by value, the actual parameter is supposed to be restricted to a single object. BasicX
erroneously allows numeric literals and expressions as actual parameters.

31

Strict vs. permissive syntax rules
Compiler option

The compiler can be configured to use either strict or permissive syntax rules. This option affects how
numeric literals, logical expressions and For-Next loop counters are treated.

The default is to use strict rules.

Permissive rules

If you prefer more permissive rules, you can disable strict syntax checking, which has the following
effects:

• For-Next loop counters:

• Counters are allowed to be declared at module level. They are not required to be local
variables.

• Counters are not write-protected inside loops, which means you're allowed to change the
value of a counter inside a loop, as well as pass a counter by reference to subprograms.

• The scope of a counter is not restricted to its loop. You are allowed to have code that
depends on the value of a counter after a loop.

• Numeric literals and logical operations:

• Bitwise logical operations are not restricted to unsigned types. Signed integer types (Integer
and Long) are also legal in these operations.

• You have a wider choice of type declaration characters that can be appended to hexadecimal
numeric literals. You can use ampersand or percent characters, or no characters.

Note: The choice of strict vs. permissive syntax rules does not have much effect on whether a BasicX
program will compile in a VB environment. Both coding conventions have about the same upward
compatibility.

Note that if you write a library to be distributed in source code form, you may want to make sure the
library compiles using strict syntax checking. That means users of the library have more flexibility for their
own code -- they can choose strict or permissive mode. Otherwise users are forced to use permissive
mode.

Known Bugs:

In permissive mode, some hexadecimal numeric literals result in incorrect values for UnsignedLong types.
For example, if X is type UnsignedLong, the assignment X = &HFFFFFFFF sets X to 65 535 rather than
the correct 4 294 967 295.

A workaround is to turn on strict syntax checking.

32

Modules and Abstract Data Types
The modular structure of BasicX makes it easy to write Abstract Data Types (ADT). An ADT is a data type
in which details of its representation are hidden behind a set of access functions and procedures. This
means you can change the internal representation of a type without changing how you get access from
the outside.

The ADT is central to Object Oriented (OO) programming. Every OO class is an ADT. Although BasicX
does not allow you to write your own classes, the BasicX standard module lends itself to writing ADTs.

In BasicX, the difference between public and private keywords is crucial to writing an ADT. Typically you
store the internal state of an ADT in variables hidden or encapsulated in the ADT. The usual mechanism
for doing this is to make the variables private. An outsider can access the variables only indirectly,
through subprogram calls, which are public. This is a form of data hiding.

Here is a simple example of an ADT that controls an LED:

'------------------------------------
Option Explicit

Private LEDState As Boolean
'------------------------------------
Public Sub PutLED(_
 ByVal State As Boolean)

 Const LEDPin As Byte = 17
 Const LEDOn As Byte = 0
 Const LEDOff As Byte = 1

 If (State) Then
 Call PutPin(LEDPin, LEDOn)
 Else
 Call PutPin(LEDPin, LEDOff)
 End If

 LEDState = State

End Sub
'------------------------------------
Public Function LEDIsOn() As Boolean

 LEDIsOn = LEDState

End Function
'------------------------------------

As you can see, the details of controlling the LED are hidden inside the module. Outsiders are limited to
procedure PutLED for changing the LED state, and function LEDIsOn for sensing the LED state. Note
that data and subprograms related to the LED are treated as a single unit.

The actual state of the LED is hidden in Boolean variable LEDState, which is not directly accessible from
outside the module. One benefit is that the LED is protected from being set to an illegal state. Other low-
level details, such as the pin number to which the LED is connected, as well as the logic required to turn

33

the LED on and off, are also hidden in the module. This decoupling makes it more convenient to change
internal details without changing the external interface.

Also, since the ADT resides in a separate file, it is easy to add the file to another program without
changing the internal details. You can build a library of modules this way.

The following is an example of outside code that might use the LED module:

'------------------------------------
Option Explicit

'------------------------------------
Public Sub Main()

 Dim Toggle As Boolean

 ' Initialize.
 Toggle = False
 Call PutLED(Toggle)

 Do
 Call PutLED(Toggle)

 If (LEDIsOn) Then
 Debug.Print "LED On"
 Else
 Debug.Print "LED Off"
 End If

 Toggle = Not Toggle
 Call Delay(1.0)
 Loop

End Sub
'------------------------------------

34

Miscellaneous statements
Attribute statement

Attribute VB_Name statements are legal but ignored. All other attribute statements are illegal.

Example of a legal attribute statement:

 Attribute VB_Name = "Module1"

(In Visual Basic, module names are taken from the VB_Name attribute. By contrast, BasicX derives
module names directly from module filenames.)

Option Statement

Option Explicit requires that variables are declared before use, which is the default in BasicX.

Syntax:

 Option Explicit

With Statement

A With statement allows you to use shorthand identifiers for objects, which means you can omit the
object name qualifier from an object reference. Currently these statements can only be used with Register
objects (see the Operating System Reference for an explanation of Register objects). No other objects
are allowed in With statements.

A With statement can only be used inside a subprogram, and a With statement that precedes a block of
code must be terminated by an End With statement at the end of the block, but before the end of the
subprogram. Nested With statements are not allowed.

Syntax:

 With Register
 [statements]
 End With

Example code:

 ' The following two assignment statements are equivalent.
 Register.OCR1AH = 255
 With Register
 .OCR1AH = 255
 End With

35

Restricted keywords
Restricted keywords in BasicX

Restricted keywords are reserved by the language for its own use. These words are not allowed to be
used as user-defined identifiers for variable names, subprogram names or similar entities:

abs
and
any
array
as
attribute
boolean
byref
byte
byval
call
calltask
case
cbool
cbyte
ccur
cdate
cdbl
cdec
cint
clng
close
const
csng
cstr
ctype
currency
cvar
cverr
date
debug

defbool
defbyte
defcur
defdate
defdbl
defdec
defint
deflng
defobj
defsng
defstr
defvar
dim
do
doevents
double
each
else
elseif
end
enum
eqv
erase
exit
false
fix
for
function
get
gosub
goto

if
imp
imports
in
input
int
integer
is
lbound
len
let
like
lock
long
loop
lset
me
mod
module
new
next
not
null
on
open
option
or
preserve
print
private
public

put
redim
rem
resume
return
rset
seek
select
set
sgn
single
spc
static
step
stop
string
sub
tab
then
to
true
ubound
unlock
until
variant
vb_name
wend
while
with
write
xor

36

Basix Express language FAQ
Frequently asked questions

1. Question: Why are the type declaration characters (!) and (#) allowed for floating point numeric
literals?

Answer: They make it easier to use code created in a Visual Basic environment. The problem is that VB
will not allow you to type point-zero after a number. For example, the number 12.0 is allowed to appear as
"12!" or "12#" in VB, and if you try to type "12.0", VB automatically replaces it with "12#" (! means single
precision, # means double precision).

VB will, on the other hand, accept the point-zero style from a file created somewhere else as long as you
don't try to edit the file inside VB.

2. Question: When you use persistent variables, why does the ordering of first access at runtime have to
match the ordering of declarations?

Answer: The ordering rules exist because of the way the compiler allocates persistent memory. The
compiler is free to allocate memory based either on declaration ordering, or on the ordering of first access
at runtime. The only way to guarantee control over ordering is to make sure both methods match.

3. Question: Why can't I use a persistent variable as a local variable?

Answer: Because a persistent variable is just that -- persistent. A local variable goes away when you
return from a subprogram in which the variable was declared.

4. Question: How are Boolean variables stored internally?

Answer: Internally a Boolean variable is stored as a byte. Numerically, false is 0 and true is 255.

5. Question: In For-Next loops, why can’t I use a step size other than ±1? And why can’t I use a floating
point loop counter?

Answer: This was a deliberate restriction on For-Next loops. Arbitrary step sizes often make it difficult for
programmers to determine exactly when a loop terminates. Floating point loop counters can frequently
lead to similar problems due to accumulated roundoff errors.

6. Question: When you use ByVal to pass an UnsignedInteger or UnsignedLong variable to a
subprogram, why is the variable write-protected inside the called subprogram? Why can't you assign to
the copy like other variables?

Answer: Because of compatibility issues. VB treats these entities as objects, and there is apparently no
distinction between ByVal and ByRef for an object in VB -- both are equivalent to ByRef. In order to
maintain upward compatibility with VB, BasicX implements ByVal as though it prohibits assigning to the
object's properties.

37

Portability issues
This section addresses questions that arise if you want to port a Basic Express program to a Visual Basic
6 compiler on a PC. Here we discuss language-related issues only.

Issues relating to differences between operating systems are not covered here. For example, VB
programs commonly presuppose a windowing environment that includes a monitor, keyboard and mouse.
None of those devices are necessarily present in an embedded system like BasicX, which means the
usual built-in VB controls for command buttons, sliders and other windows-related objects are not
covered.

Other operating system dependencies, such as serial I/O, are in the same category.

Operator precedence

BasicX: Operators are listed in order of decreasing precedence:

 (Highest) [1] ^
 [2] Not

[3] * \ / Mod And
[4] + - Or Xor &

 (Lowest) [5] = > < <> <= >=

VB: Operators are listed in order of decreasing precedence:

 (Highest) [1] ^
 [2] * /
 [3] \
 [4] Mod
 [5] + -
 [6] &
 [7] = > < <> <= >=
 [8] Not
 [9] And
 [10] Or
 (Lowest) [11] Xor

Note in particular the different precedence of integer divide compared to integer multiply. Because of this,
the following expression behaves differently in VB as compared to BasicX:

 Dim N As Integer

 N = 12 \ 2 * 3 ' In VB, N = 2; in BasicX, N = 18

Parentheses can be used to remove the ambiguity:

 N = (12 \ 2) * 3

 N = 12 \ (2 * 3)

Note that a similar floating point operation does not have the same portability problem.

38

Checking for stack overflow

BasicX: Does not check for stack overflow.

VB: Checks for stack overflow.

Automatic variable initialization

BasicX: Does not automatically initialize variables.

VB: Automatically initializes variables. Numeric variables, for example, are initialized to zero.

Binary constants

BasicX: Includes system-defined binary constants, such as bx11110000.

VB: Binary constants are not built in, but they can be simulated by declaring the following symbolic
constants in module-level code:

 Public Const bx00000000 As Byte = &H00
 Public Const bx00000001 As Byte = &H01
 Public Const bx00000010 As Byte = &H02
 [...]
 Public Const bx11111111 As Byte = &HFF

VB_Name attribute statements

BasicX: Ignores VB_Name attribute statements.

VB: Uses the VB_Name attribute to define the module name in which the attribute appears. Note that
attribute statements are managed automatically by VB -- the statements are not normally visible in the
source code when you use the VB environment for editing.

String arguments -- fixed length vs. variable length

BasicX: When a string variable is passed as an argument to a subprogram, it retains its identity as a
fixed or variable length string. That is, fixed length strings stay fixed, and variable length strings stay
variable.

VB: Converts all string arguments to variable length within the called subprogram. Only after return does
a fixed length string recover its fixed length attribute.

Bounded strings

BasicX: Allows Mid assignment statements, such as Mid(S, 1, 2) = expression, where S is a bounded
string.

VB: Does not allow Mid assignment statements for bounded strings. Mid functions are allowed, however.

39

UnsignedInteger and UnsignedLong types

BasicX: These types are provided by the system.

VB: These types are not supplied by the system, but they can be implemented as classes. Also, VB does
not supply integer types that exactly match the numerical ranges for UnsignedInteger (0 to 65 535) or
UnsignedLong (0 to about 4 billion). In most cases VB's 32-bit Long type is about the closest you can get
for these objects, although VB's "Decimal" or “Currency” types could be used for UnsignedLong if you
don't need to use bitwise Boolean operations on the type.

Mod operator

BasicX: Returns a positive or zero value regardless of the signs of the operands. For example:

 (A Mod B) is treated as equivalent to (Abs(A) Mod Abs(B))

VB: May return a negative result depending on the signs of the operands.

Scientific notation and data type

BasicX: If a numeric literal includes scientific notation, if neither a decimal point nor type declaration
character is included, BasicX treats the number as a discrete type.

VB: Treats a numeric literal as a floating point type if scientific notation is used, regardless of whether a
decimal point is present.

General error checking

If you want to port a program from BasicX to VB, differences in execution are generally minimized by
selecting the following VB compiler options:

• Remove Array Bounds Checks

• Remove Integer Overflow Checks

• Remove Floating Point Error Checks

To get at these options in VB, go to the Project menu, choose Properties. Click on the Compile tab, then
push the Advanced Optimizations button. The selections should appear.

40

Index
Abstract data type 32
Actual parameter 11
Array elements, ordering 24
Array, multidimensional 12
Arrays 24
Arrays, passing to subprograms 11
Assignment statement 28
Attribute statement 34
Binary constants 38
Binary, numeric literal 19
Boolean, data type 17
Bounded string 38
BoundedString, data type 17
ByRef 10
ByVal 10
Byte, data type 17, 29
CBool 22
CByte 22
CInt 22
CLng 22
CSng 22
CStr 22
CType 21, 22
Call 9
Case 15
Case else 15
Column-major, array ordering 24
Comment format 6
Constants 18
Control structures 13
Converting data types 22
Data hiding 6, 32
Data types 17
Declaration, variable 18
Dimensions, array 24
Do loop 13
Do until 13
Do while 13
Else 13
ElseIf 13
Encapsulation 6, 32
End enum 20
End select 15, 16
End function 9
End sub 9
Enum 20
Enumeration type, operations allowed 20

41

Enumeration values, ordering 21
Enumeration, data type 17, 20
Exit do 14
Exit for 15
Exit function 10
Expressions 26
FixB 22
FixI 22
FixL 22
For next 14
Formal parameter 11
Frequently asked questions 36
Function return types 10
Functions 9
GoTo 16
Hexadecimal, numeric literal 19
Identifiers 6
If then 13
Include statement 6
Integer, data type 17
Line continuation 6
Literal, binary 19
Literal, hexadecimal 19
Literal, numeric 19
Local variables 7
Long, data type 17
Loop counters 14
Mixed mode arithmetic 26
Mod operator, portability 39
Module level code 7
Module level variables 7
Module name 8
Modules 32
Modules 6
New, keyword 29
Operator precedence, portability 37
Operators, arithmetic 27
Operators, logical 27
Operators, relational 27
Operators, string 28
Option statement 34
Parameter, actual 11
Parameter, formal 11
Parameters, subprogram 10
Pass by reference 10
Pass by value 10
Passing mechanisms, restrictions 11
Persistent variables 24
Persistent variables, ordering 25
Portability issues 37
Precedence, operator 28

42

Private 7
Procedure Main 5, 8
Public 7
QuickBasic 6
Restricted keywords 35
Reuse of code 6
Select case 15
Set, keyword 29
Single, data type 17
Stack overflow 38
Statement format 5
Statistical rounding 22
Step size, for next loop 36
Step, for next 14
Strict syntax rules 31
String function return 10
String functions 9
String storage 17
String, data type 17
Strings passed by value 11
Strong typing 26
Sub procedures 9
Sub, keyword 5
Subprograms 9
ToEnum 21, 22
Type conversion, enumeration 21
Type conversion, unsigned 30
Type declaration characters 22
Unsigned types 29
UnsignedInteger function return 10
UnsignedInteger type 29
UnsignedLong function return 10
UnsignedLong type 29
VB_Name attribute 38
Variables 17
Visual Basic 37
With statement 34

	Basic Express
	A simple program
	Identifiers
	Bounded strings – syntax is as follows:
	Operations on enumeration types
	
	
	
	Enumeration types are not numeric types, and there is a limited set of operations that are legal with enumeration types. The following operations are legal:

	Operator precedence
	Bounded strings
	
	
	
	
	Index

	QuickBasic 6
	Reuse of code 6

