

Engineering Formula Sheet

Statistics

Mean

$$\mu = \frac{\sum x_i}{n}$$

 μ = mean value

 $\Sigma x_i = \text{sum of all data values } (x_1, x_2, x_3, ...)$

n = number of data values

Standard Deviation

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n}}$$

 σ = standard deviation

 x_i = individual data value ($x_1, x_2, x_3, ...$)

 μ = mean value

n = number of data values

Mode

Place data in ascending order.

Mode = most frequently occurring value

If two values occur at the maximum frequency the data set is *bimodal*.

If three or more values occur at the maximum frequency the data set is *multi-modal*.

Median

Place data in ascending order.

If n is odd, median = central value

If n is even, median = mean of two central values

n = number of data values

Range

Range = $x_{max} - x_{min}$

 $x_{max} = maximum data value$

 x_{min} = minimum data value

Probability

Frequency

$$f_x = \frac{n_x}{n}$$

$$P_x = \frac{f_x}{f_x}$$

 f_x = relative frequency of outcome x

 n_x = number of events with outcome x

n = total number of events

 P_x = probability of outcome x

f_a = frequency of all events

$$P_k = \frac{n!(p^k)(q^{n-k})}{k!(n-k)!}$$

P_k = binomial probability of k successes in n trials

Binomial Probability (order doesn't matter)

p = probability of a success

q = 1 - p = probability of failure

k = number of successes

n = number of trials

Independent Events

 $P (A \text{ and } B \text{ and } C) = P_A P_B P_C$

P (A and B and C) = probability of independent events A and B and C occurring in sequence

P_A = probability of event A

Mutually Exclusive Events

 $P (A \text{ or } B) = P_A + P_B$

P (A or B) = probability of either mutually exclusive event A or B occurring in a trial

 P_A = probability of event A

 Σx_i = sum of all data values $(x_1, x_2, x_3, ...)$

n = number of data values

Conditional Probability

$$P(A|D) = \frac{P(A) \cdot P(D|A)}{P(A) \cdot P(D|A) + P(\sim A) \cdot P(D|\sim A)}$$

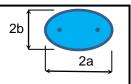
P(A|D) = probability of event A given event D

P(A) = probability of event A occurring

 $P(\sim A)$ = probability of event A not occurring

 $P(D_{\uparrow}A) = P(D_{\downarrow}A) = P(D_$

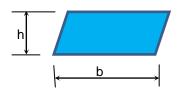
Plane Geometry


Circle

Circumference = $2 \pi r$ Area = πr^2

Ellipse

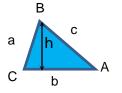
Area = π a b


Rectangle

Perimeter = 2a + 2b Area = ab

Parallelogram

Area = bh


Triangle

Area = ½ bh

$$a^{2} = b^{2} + c^{2} - 2bc \cdot cos \angle A$$

$$b^{2} = a^{2} + c^{2} - 2ac \cdot cos \angle B$$

$$c^{2} = a^{2} + b^{2} - 2ab \cdot cos \angle C$$

Right Triangle

$$c^2 = a^2 + b^2$$

$$\sin \theta = \frac{a}{c}$$

$$\cos \theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

Regular Polygons

Area =
$$n \frac{s(\frac{1}{2} f)}{2}$$

n = number of sides

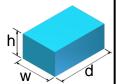
Trapezoid

Area =
$$\frac{1}{2}(a + b)h$$

Solid Geometry

Cube

Volume = s^3 Surface Area = $6s^2$


Sphere

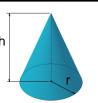
Volume = $\frac{4}{3} \pi r^3$ Surface Area = $4 \pi r^2$

Rectangular Prism

Volume = wdh Surface Area = 2(wd + wh + dh)

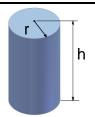
Right Circular Cone

Volume =
$$\frac{\pi r^2 h}{3}$$


Surface Area = $\pi r \sqrt{r^2 + h^2}$

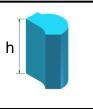
$me = \frac{1}{3}$

Pyramid


Volume = $\frac{Ah}{3}$

A = area of base

Cylinder


Volume = $\pi r^2 h$ Surface Area = $2 \pi r h + 2 \pi r^2$

Irregular Prism

Volume = Ah

A = area of base

Constants

 $g = 9.8 \text{ m/s}^2 = 32.27 \text{ ft/s}^2$

 $G = 6.67 \times 10^{-11} \,\mathrm{m}^3/\mathrm{kg} \cdot \mathrm{s}^2$

 $\pi = 3.14159$

Conversions

Mass

1 kg = $2.205 \text{ lb}_{\text{m}}$ 1 slug = $32.2 \text{ lb}_{\text{m}}$ 1 ton = $2000 \text{ lb}_{\text{m}}$

Area

1 acre = 4047 m^2 = $43,560 \text{ ft}^2$ = 0.00156 mi^2

Force

 $1 N = 0.225 lb_f$ $1 kip = 1,000 lb_f$

Energy

1 J = 0.239 cal = 9.48×10^{-4} Btu = 0.7376 ft·lb_f 1kW h = 3,600,000 J

Length

1 m = 3.28 ft 1 km = 0.621 mi 1 in. = 2.54 cm 1 mi = 5280 ft 1 yd = 3 ft

Volume

1L = 0.264 gal = 0.0353 ft³ = 33.8 fl oz 1mL = 1 cm³ = 1 cc

Pressure

1 atm = 1.01325 bar = 33.9 ft H_2O = 29.92 in. Hg= 760 mm Hg= 101,325 Pa= 14.7 psi1 psi = 2.31 ft of H_2O

Defined Units

1 J $= 1 \text{ N} \cdot \text{m}$ $= 1 \text{ kg} \cdot \text{m} / \text{s}^2$ 1 N $= 1 \text{ N} / \text{m}^2$ 1 Pa = 1 W/A1 V = 1 J/s1 W = 1 V/A1 W $1 \text{ Hz} = 1 \text{ s}^{-1}$ 1 F $= 1 A \cdot s / V$ 1 H = 1 V·s / V

Time

1 d = 24 h 1 h = 60 min 1 min = 60 s 1 yr = 365 d

Temperature <u>Unit</u> Equivalents

1 K = 1 °C = 1.8 °F = 1.8 °R See below for temperature calculation

Power

1 W = 3.412 Btu/h = 0.00134 hp = 14.34 cal/min = 0.7376 ft·lb_t/s

SI Prefixes

Numbers Less Than One		
Power of 10	Prefix	Abbreviation
10 ⁻¹	deci-	d
10 ⁻²	centi-	С
10 ⁻³	milli-	m
10 ⁻⁶	micro-	μ
10 ⁻⁹	nano-	n
10 ⁻¹²	pico-	р
10 ⁻¹⁵	femto-	f
10 ⁻¹⁸	atto-	а
10 ⁻²¹	zepto-	Z
10 ⁻²⁴	vocto-	V

Numbers Greater Than One		
Power of 10	Prefix	Abbreviation
10 ¹	deca-	da
10 ²	hecto-	h
10 ³	kilo-	k
10 ⁶	Mega-	M
10 ⁹	Giga-	G
10 ¹²	Tera-	Т
10 ¹⁵	Peta-	Р
10 ¹⁸	Exa-	Е
10 ²¹	Zetta-	Z
10 ²⁴	Yotta-	Υ

Equations

Mass and Weight

$$M = VD_m$$

$$W = mg$$

$$W = VD_w$$

$$m = mass$$

$$D_w$$
 = weight density

g = acceleration due to gravity

Temperature

$$T_{K} = T_{C} + 273$$

$$T_R = T_F + 460$$

$$T_F = \frac{5}{9} T_c + 32$$

 T_K = temperature in Kelvin

T_C = temperature in Celsius

 T_R = temperature in Rankin

 T_F = temperature in Fahrenheit

Force

F = ma

F = force

m = mass

a = acceleration

Equations of Static Equilibrium

$$\Sigma F_x = 0$$
 $\Sigma F_y = 0$

$$F_v = 0$$
 $\Sigma M_P = 0$

 F_x = force in the x-direction

 $F_v =$ force in the y-direction

 \dot{M}_P = moment about point P

Equations (Continued)

Energy: Work

 $W = F_{\parallel} \cdot d$

W = work

 F_{\parallel} = force parallel to direction of displacement

 $\mathbf{d} = \text{displacement}$

Power

$$P = \frac{E}{t} = \frac{W}{t}$$

$$P = \frac{\tau \cdot rpm}{5252}$$

P = power

E = energy

W = work

t = time

 τ = torque

rpm = revolutions per minute

Efficiency

Efficiency (%) =
$$\frac{P_{out}}{P_{in}} \cdot 100\%$$

P_{out} = useful power output P_{in} = total power input

Energy: Potential

U = mgh

U = potential energy

m =mass

g = acceleration due to gravity

h = height

Energy: Kinetic

$$K = \frac{1}{2} mv^2$$

K = kinetic energy

m = mass

v = velocity

Energy: Thermal

Q =mc∆T

Q = thermal energy

m = mass

c = specific heat

 ΔT = change in temperature

Fluid Mechanics

$$p = \frac{F}{A}$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 (Charles' Law)

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$
 (Gay-Lussanc's Law)

 $p_1V_1 = p_2V_2$ (Boyle's Law)

Q = Av

 $A_1V_1 = A_2V_2$

Horsepower =
$$\frac{Qp}{1714}$$

absolute pressure = gauge pressure + atmospheric pressure

p = absolute pressure

F = Force

A = Area

V = volume

T = absolute temperature

Q = flow rate

v = flow velocity

Mechanics

$$\bar{s} = \frac{d}{t}$$

$$\bar{\mathbf{v}} = \frac{\Delta \mathbf{d}}{\Delta \mathbf{t}}$$

$$a = \frac{v_f - v_i}{t}$$

$$X = \frac{v_i^2 \sin(2\theta)}{-q}$$

$$v = v_0 + at$$

$$d = d_0 + v_0 t + \frac{1}{2} a t^2$$

$$v^2 = {v_0}^2 + 2a(d - d_0)$$

 $\tau = dFsin\theta$

 \overline{s} = average speed

 $\bar{\mathbf{v}}$ = average velocity

v = velocity

a = acceleration

X = range

t = time

 Δ **d** = change in displacement

d = distance

g = acceleration due to gravity

 θ = angle

 τ = torque

Electricity

Ohm's Law

$$V = IR$$

$$P = IV$$

$$R_T$$
 (series) = $R_1 + R_2 + \cdots + R_n$

$$R_T$$
 (parallel) = $\frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \cdots + \frac{1}{R_n}}$

Kirchhoff's Current Law

$$I_T = I_1 + I_2 + \cdots + I_n$$

or
$$I_T = \sum_{k=1}^{n} I_k$$

Kirchhoff's Voltage Law

$$V_T = V_1 + V_2 + \cdots + V_n$$

or
$$V_T = \sum_{k=1}^n V_k$$

V = voltage

 V_T = total voltage

I = current

 I_T = total current

R = resistance

 R_T = total resistance

P = power

Thermodynamics

$P = Q' = AU\Delta T$

$$P = \frac{Q}{\Lambda t}$$

$$U = \frac{1}{R} = \frac{k}{L}$$

$$P = \frac{kA\Delta T}{I}$$

$$A_1V_1 = A_2V_2$$

$$P_{net} = \sigma Ae(T_2^4 - T_1^4)$$

P = rate of heat transfer

Q = thermal energy

A = Area of thermal conductivity

U = coefficient of heat conductivity (U-factor)

 ΔT = change in temperature

 Δt = change in time

R = resistance to heat flow (R-value)

k = thermal conductivity

v = velocity

P_{net} = net power radiated

$$\sigma = 5.6696 \times 10^{-8} \frac{W}{m^2 \cdot K^4}$$

e = emissivity constant

L = thickness

Section Properties

Moment of Inertia

$$I_{xx} = \frac{bh^3}{12}$$

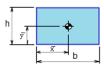
I_{xx} = moment of inertia of a rectangular section about x-x axis

Complex Shapes Centroid

$$\overline{x} = \frac{\sum x_i A_i}{\sum A_i}$$
 and $\overline{y} = \frac{\sum y_i A_i}{\sum A_i}$

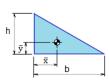
 \overline{x} = x-distance to the centroid

 \overline{y} = y-distance to the centroid

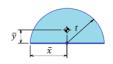

 $x_i = x$ distance to centroid of shape i

y_i = y distance to centroid of shape i

 A_i = Area of shape i


Rectangle Centroid

$$\overline{x} = \frac{b}{2}$$
 and $\overline{y} = \frac{h}{2}$


Right Triangle Centroid

$$\overline{x} = \frac{b}{3}$$
 and $\overline{y} = \frac{h}{3}$

Semi-circle Centroid

$$\overline{x} = r$$
 and $\overline{y} = \frac{4r}{3\pi}$

 \overline{x} = x-distance to the centroid

 \bar{y} = y-distance to the centroid

Material Properties

Stress (axial)

$$\sigma = \frac{F}{\Delta}$$

 σ = stress

F = axial force

A = cross-sectional area

Strain (axial)

$$\epsilon = \frac{\delta}{L_0}$$

 ϵ = strain

 L_0 = original length

 δ = change in length

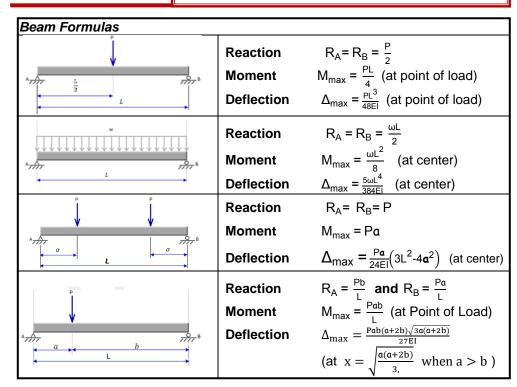
Modulus of Elasticity

$$E = \frac{\sigma}{\epsilon}$$

$$E = \frac{(F_2 - F_1)L_0}{(\delta_2 - \delta_1)A}$$

E = modulus of elasticity

 $\sigma = stress$


 $\varepsilon = strain$

A = cross-sectional area

F = axial force

 δ = deformation

Structural Analysis

Deformation: Axial

$$_{5} = \frac{FL_{0}}{AE}$$

 δ = deformation

F = axial force

 L_0 = original length

A = cross-sectional area E = modulus of elasticity

Truss Analysis

$$2J = M + R$$

J = number of joints

M =number of members

R = number of reaction forces

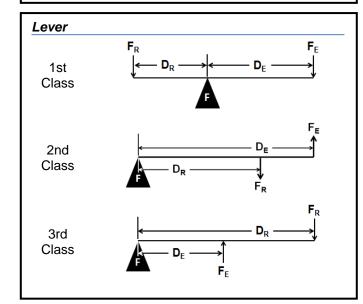
Simple Machines

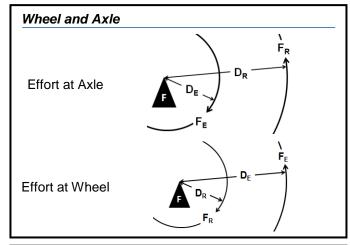
Mechanical Advantage (MA)

$$IMA = \frac{D_E}{D_R}$$

$$AMA = \frac{F_R}{F_E}$$

% Efficiency=
$$\left(\frac{AMA}{IMA}\right)$$
 100

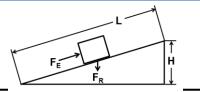

IMA = Ideal Mechanical Advantage AMA = Actual Mechanical Advantage


 D_E = Effort Distance

 D_R = Resistance Distance

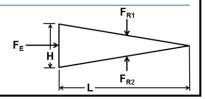
 F_E = Effort Force

 F_R = Resistance Force


Pulley Systems

IMA = Total number of strands of a single string supporting the resistance

$$IMA = \frac{D_E \text{ (string pulled)}}{D_R \text{ (resistance lifted)}}$$


Inclined Plane

$$IMA = \frac{L \text{ (slope)}}{H}$$

Wedge

$$IMA = \frac{L (\perp to height)}{H}$$

Screw

$$IMA = \frac{C}{Pitch}$$

Pitch

C = Circumference

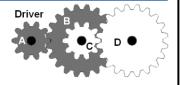
r = radius

Pitch = distance between threads

TPI = Threads Per Inch

Compound Machines


 $MA_{TOTAL} = (MA_1) (MA_2) (MA_3) \dots$


Gears; Sprockets with Chains; and Pulleys with **Belts Ratios**

$$GR = \frac{N_{out}}{N_{in}} = \frac{d_{out}}{d_{in}} = \frac{\omega_{in}}{\omega_{out}} = \frac{r_{out}}{r_{in}}$$

$$\frac{d_{out}}{d_{in}} = \frac{\omega_{in}}{\omega_{out}} = \frac{\tau_{out}}{\tau_{in}} \text{ (pulleys)}$$

Compound Gears

GR = Gear Ratio

 ω_{in} = Angular Velocity - driver

ω_{out} = Angular Velocity - driven

N_{in} = Number of Teeth - driver

Nout = Number of Teeth - driven

 d_{in} = Diameter - driver

dout = Diameter - driven

 τ_{in} = Torque - driver

 τ_{out} = Torque - driven