
Find the area of the figure. Round to the nearest tenth if necessary.

1.

SOLUTION:

The figure can be separated into a trapezoid and a rectangle. Find the area of each.

Area of Trapezoid

The height is 8 - 4, or 4 inches.

$$A = \frac{1}{2}h(b_1 + b_2)$$

$$A = \frac{1}{2}(4)(8+5.3)$$

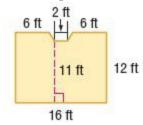
$$A = \frac{1}{2}(4)(13.3)$$

$$A = 26.6$$

Area of the Rectangle

$$A = lw$$

$$A = 8 \cdot 4$$


$$A = 32$$

The area of the figure is 26.6 + 32 or 58.6 square inches.

ANSWER:

58.6 in²

3. The floor plan of a kitchen is shown. If the entire kitchen floor is to be tiled, how many square feet of tile are needed?

SOLUTION:

The figure is a rectangle with a trapezoid section missing. Find the area of each. Subtract the area of the trapezoid from the area of the rectangle.

Area of Trapezoid

The unknown base is 16 - (6 + 6), or 4 feet. The height is 12 - 11, or 1 foot.

$$A = \frac{1}{2}h(b_1 + b_2)$$

$$A = \frac{1}{2}(1)(4+2)$$

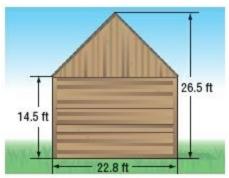
$$A = \frac{1}{2}(1)(6)$$

$$A = 3$$

Area of the Rectangle

$$A = lw$$

$$A = 12 \cdot 16$$


$$A = 192$$

The square footage of tile needed is 192 - 3 or 189 square feet.

ANSWER:

189 ft²

- 5. The diagram shows one side of a storage barn.
 - **a.** This side needs to be painted. Find the total area to be painted.
 - **b.** Each gallon of paint costs \$20 and covers 350 square feet. Find the total cost to paint this side once. Justify your answer.

SOLUTION:

a. The side of the barn can be separated into a triangle and a rectangle. Find the area of each.

Area of Rectangle

$$A = lw$$

$$A = 22.8 \cdot 14.5$$

$$A = 330.6$$

Area of Triangle

The height is 26.5 - 14.5, or 12 feet.

$$A = \frac{1}{2}bh$$

$$A = \frac{1}{2}(22.8)(12)$$

$$A = 136.8$$

The total area to be painted is 330.6 + 136.8 or 467.4 square feet.

b. You will need $467.4 \div 350 \approx 1.34$ gallons of paint. Since only whole gallons of paint can be purchased, you will need 2 gallons of paint. At \$20 each, the cost will be $2 \times 20 or \$40.

ANSWER:

- a. 467.4 ft²
- **b.** $467.4 \div 350 \approx 1.34$; Since only whole gallons of paint can be purchased, you will need 2 gallons of paint. At \$20 each, the cost will be $2 \times 20 or \$40.

7. **Persevere with Problems** Describe, how to separate the figure into simpler figures. Then estimate the area. One square unit equals 2,400 square miles. Justify your answer.

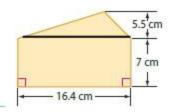
SOLUTION:

Sample answer: Add the areas of a rectangle and a triangle. Area of rectangle: $3 \times 4 = 12$; Area of triangle:

$$\frac{1}{2} \times 3 \times 3 = 4.5$$
; 12 + 4.5 = 16.5. So, an approximate area is 16.5 × 2,400 or 39,600 square miles.

ANSWER:

Sample answer: Add the areas of a rectangle and a triangle. Area of rectangle: $3 \times 4 = 12$; Area of triangle:


$$\frac{1}{2} \times 3 \times 3 = 4.5$$
; 12 + 4.5 = 16.5. So, an approximate area is 16.5 × 2,400 or 39,600 mi².

9. **Make a Conjecture** Refer to the composite figure at the right. Make a conjecture about how the area of the composite figure changes if each dimension given is doubled. Then test your conjecture by doubling the dimensions and finding the area.

SOLUTION:

The area of the composite figure will be 4 times greater when the dimensions are doubled.

The find area of the original figure by creating a triangle and rectangle within the figure.

Area of triangle

$$A = \frac{1}{2}bh$$

$$A = \frac{1}{2} \times 16.4 \times 5.5$$

$$A = 45.1$$

Area of the rectangle

$$A = l \cdot w$$

$$A = 16.4 \cdot 7$$

$$A = 114.8$$

The total original area is 45.1 + 114.8 = 159.9 square cm

Find the new area after doubling the dimensions.

Area of triangle

$$A = \frac{1}{2}bh$$

$$A = \frac{1}{2} \times 32.8 \times 11$$

$$A = 180.4$$

Area of the rectangle

$$A = l \cdot w$$

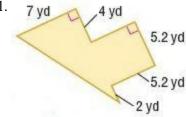
$$A = 32.8 \cdot 14$$

$$A = 459.2$$

The total area of the new figure is 180.4 + 459.2 = 639.2 square cm

To find how many times larger the new area is divide the new area by the original area.

$$\frac{639.6}{159.9} = 4$$


The new figure has an area that is 4 times greater than the original.

ANSWER:

The area is multiplied by 4. Original area: 159.9 square cm; new area: 639.6 square cm

Find the area of the figure. Round to the nearest tenth if necessary.

11.

SOLUTION:

The figure can be separated into a square and a triangle. Find the area of each.

Area of Square

$$A = lw$$

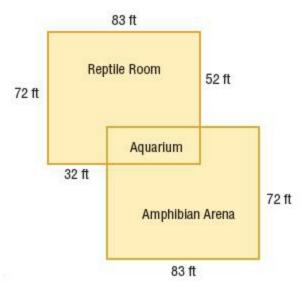
$$A = 5.2 \cdot 5.2$$

$$A = 27.04$$

Area of Triangle

The base is 4 + 5.2 + 2, or 11.2 yards.

$$A = \frac{1}{2}bh$$


$$A = \frac{1}{2}(7)(11.2)$$

$$A = 39.2$$

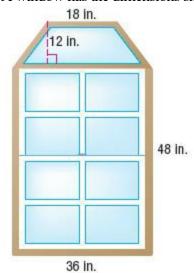
The area of the figure is 27.0 + 39.2 or 66.2 square yards.

ANSWER:

13. At the local zoo, the aquarium can be seen from the Reptile Room and the Amphibian Arena. What is the total area of both rooms and the aquarium?

SOLUTION:

Area of Reptile Room: 72×83 or 5976Area of Amphibian Arena: 72×83 or 5976The sum of the areas: 5976 + 5976 or 11,952


Overlapping area: 20×51 or 1,020

Subtract the overlapping area: 11,952 - 1,020 = 10,932 square feet

ANSWER:

10,932 ft²

15. A window has the dimensions shown.

Determine if each statement is true or false.

- **a**. The area of the trapezoid section of the window is 648 square inches. True False
- **b**. The area of the rectangular section of the window is 1,728 square inches. True False
- c. The area of the entire window is 2,376 square inches. True False

SOLUTION:

a. area of the trapezoid

$$A = \frac{1}{2}h(b_1 + b_2)$$

$$A = \frac{1}{2}(12)(18 + 36)$$

$$A = \frac{1}{2}(12)(54)$$

$$A = \frac{1}{2}(648)$$

$$A = 324$$

The area of the trapezoid is 324 square inches, so letter a is false.

b. area of rectangle

$$A = lw$$

$$A = 36 • 48$$

$$A = 1,728$$

The area of the rectangle is 1,728 square inches. So letter b is true.

c. The area of the window is 1,728 + 324 or 2,052 square inches. So letter c is false.

ANSWER:

- a. false
- **b.** true
- c. false

Multiply. $17.36 \times 12 =$ SOLUTION: 1 36 ×<u>12</u> 72 +360 432 ANSWER: 432 19. $72 \times 200 =$ SOLUTION: 72 ×200 14400 ANSWER: 14,400

21. Hiking burns about 144 Calories each half hour. About how many Calories can be burned if someone hikes 3 days a week for an hour?

SOLUTION:

Since 144 Calories are burned each half hour, 144 + 144 or 288 Calories are burned in an hour. So, for 3 days a person can burn 288×3 or 864 Calories.

ANSWER:

864 Calories