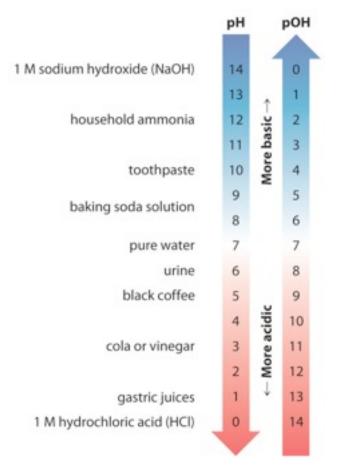
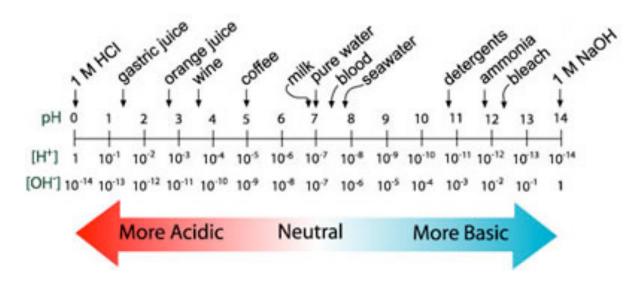
| Name | Date | Period |
|------|------|--------|
|      |      |        |

## RELATIONSHIP BETWEEN PH AND POH FOR ACIDS AND BASES


## pH vs. pOH scale:

Both acids and bases can measured using the pH or pOH scale. Both scales provide a measure of either the H+ concentration or the OH-concentration.


Notice that each scale shows were acids and bases both are located.

- When acids are measured, the pH is less than 7, but the pOH is greater than 7.
- When bases are measured, the pH is greater than 7, but the pOH is less than 7.

Both scales are dependent on what ion you are measuring.



## [H+] vs. [OH-]:



pH and pOH are related to one another; **THEY ARE NOT INDEPENDENT OF EACH OTHER**. As pH increases, pOH decreases. As pH decreases, pOH increases. By knowing what ion you are measuring on which scale, this will tell you whether or not the solution is acidic or basic.

| Ion Concentration | Solution Type | рН     | рОН     |
|-------------------|---------------|--------|---------|
| [H+] > [OH-]      | Acidic        | pH < 7 | pOH > 7 |
| [H+] < [OH-]      | Basic         | pH > 7 | pOH < 7 |
| [H+] = [OH-]      | Neutral       | pH = 7 | pOH = 7 |

Because these scales are related, an equation can be used to explain their correlation.

$$pH + pOH = 14$$

$$pH = 14 - pOH$$

$$pOH = 14 - pH$$

\*The bottom equations are manipulations of the top equation\*

The **KEYS** to calculations are knowing:

- 1. Knowing what type of solution you are working with
- 2. What equation to use first

## **Example Calculations:**

- 1. Calculate the pH and pOH of a 0.33 M H<sub>2</sub>SO<sub>4</sub> solution.
  - Are you working with an acid or a base?
  - Are you given the concentration, or *Molarity* of that solution?
  - Next, plug the concentration or Molarity into the correct equation.
     Because this is an acidic solution, we have to calculate pH first.

$$pH = -\log[0.33] =$$
\_\_\_\_\_

Now we can calculate the pOH, because we have calculated the pH. pOH = 14 - pH =\_\_\_\_\_\_ = \_\_\_\_

- 2. Calculate the pH and pOH of a 0.25 M NaOH solution.
  - Are you working with an acid or a base?
  - Are you given the concentration, or Molarity of that solution?
  - Next, plug the concentration or Molarity into the correct equation.
     Because this is a basic solution, we have to calculate pOH first.

$$pOH = -\log[0.25] =$$
\_\_\_\_\_

Now we can calculate the pH, because we have calculated the pOH.

$$pH = 14 - pOH =$$
\_\_\_\_\_\_ = \_\_\_\_