Contents

Exam Instructions
Student Answer Sheet for the Multiple-Choice Section
Section I: Multiple-Choice Questions
Section II: Free-Response Questions
Multiple-Choice Answer Key
Free-Response Scoring Guidelines
Scoring Worksheet

Note: This publication shows the page numbers that appeared in the 2014–15 AP Exam Instructions book and in the actual exam. This publication was not repaginated to begin with page 1.
Exam Instructions

The following contains instructions taken from the 2014–15 AP Exam Instructions book.
AP® Calculus AB/BC Exam

Regularly Scheduled Exam Date: Tuesday morning, May 5, 2015
Late-Testing Exam Date: Thursday morning, May 21, 2015

Section I Total Time, Calculus AB: 1 hr. 45 min.
Section I Total Time, Calculus BC: 1 hr. 45 min.

Section II Total Time, Calculus AB: 1 hr. 30 min.
Section II Total Time, Calculus BC: 1 hr. 30 min.

<table>
<thead>
<tr>
<th>Section I</th>
<th>Total Time: 1 hour 45 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Questions: 45*</td>
<td></td>
</tr>
<tr>
<td>Percent of Total Score: 50%</td>
<td></td>
</tr>
<tr>
<td>Writing Instrument: Pencil required</td>
<td></td>
</tr>
</tbody>
</table>

*The number of questions may vary slightly depending on the form of the exam.

| Part A: |
| Number of Questions: 28 |
| Time: 55 minutes |
| No calculator allowed |

| Part B: |
| Number of Questions: 17 |
| Time: 50 minutes |
| Graphing calculator required |

<table>
<thead>
<tr>
<th>Section II</th>
<th>Total Time: 1 hour 30 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Questions: 6</td>
<td></td>
</tr>
<tr>
<td>Percent of Total Score: 50%</td>
<td></td>
</tr>
<tr>
<td>Writing Instrument: Either pencil or pen with black or dark blue ink</td>
<td></td>
</tr>
</tbody>
</table>

Note: For Section II, if students finish Part A before the end of the timed 30 minutes for Part A, they cannot begin working on Part B. Students must wait until the beginning of the timed 60 minutes for Part B. However, during the timed portion for Part B, students may work on the problems in Part A without the use of a calculator.

| Part A: |
| Number of Questions: 2 |
| Time: 30 minutes |
| Percent of Section II Score: 33.3% |
| Graphing calculator required |

| Part B: |
| Number of Questions: 4 |
| Time: 60 minutes |
| Percent of Section II Score: 66.6% |
| No calculator allowed |

What Proctors Need to Bring to This Exam

- Exam packets
- Answer sheets
- AP Student Packs
- 2014-15 AP Coordinator’s Manual
- This book — AP Exam Instructions
- AP Exam Seating Chart template(s)
- School Code and Home-School/Self-Study Codes
- Extra graphing calculators
- Pencil sharpener
- Container for students’ electronic devices (if needed)
- Extra No. 2 pencils with erasers
- Extra pens with black or dark blue ink
- Extra paper
- Stapler
- Watch
- Signs for the door to the testing room
 - “Exam in Progress”
 - “Cell phones are prohibited in the testing room”

SEATING POLICY FOR AP CALCULUS AB AND CALCULUS BC EXAMS

<table>
<thead>
<tr>
<th>Testing Window</th>
<th>Exams Administered at Schools in the United States, Canada, Puerto Rico, and the U.S. Virgin Islands</th>
<th>Exams Administered at Schools Outside the United States, Canada, Puerto Rico, and the U.S. Virgin Islands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regularly Scheduled Exams</td>
<td>Students must be seated no less than four feet apart.</td>
<td>Students must be seated no less than five feet apart.</td>
</tr>
<tr>
<td>Late-Testing Exams</td>
<td>Students must be seated no less than five feet apart.</td>
<td>Students must be seated no less than five feet apart.</td>
</tr>
</tbody>
</table>
Calculus

Graphing calculators are required to answer some of the questions on the AP Calculus Exams. Before starting the exam administration, make sure each student has a graphing calculator from the approved list on page 46 of the 2014-15 AP Coordinator's Manual. If a student does not have a graphing calculator from the approved list, you may provide one from your supply. If the student does not want to use the calculator you provide or does not want to use a calculator at all, he or she must hand copy, date, and sign the release statement on page 44 of the 2014-15 AP Coordinator's Manual.

During the administration of Section I, Part B, and Section II, Part A, students may have no more than two graphing calculators on their desks. Calculators may not be shared. Calculator memories do not need to be cleared before or after the exam. Students with Hewlett-Packard 48–50 Series and Casio FX-9860 graphing calculators may use cards designed for use with these calculators. Proctors should make sure infrared ports (Hewlett-Packard) are not facing each other. Since graphing calculators can be used to store data, including text, proctors should monitor that students are using their calculators appropriately. Attempts by students to use the calculator to remove exam questions and/or answers from the room may result in the cancellation of AP Exam scores.

The AP Calculus AB Exam and the AP Calculus BC Exam should be administered simultaneously. They may be administered in separate rooms, or in the same room if it is more convenient.

SECTION I: Multiple Choice

Do not begin the exam instructions below until you have completed the appropriate General Instructions for your group.

These exams include survey questions. The time allowed for the survey questions is in addition to the actual test-taking time.

Make sure you begin the exams at the designated time. Remember: You must complete a seating chart for this exam. See pages 279–280 for a seating chart template and instructions. See the 2014-15 AP Coordinator’s Manual for exam seating requirements (pages 48–50, 88).

If you are giving the regularly scheduled exam, say:

It is Tuesday morning, May 5, and you will be taking either the AP Calculus AB Exam or the AP Calculus BC Exam.

If you are giving the alternate exam for late testing, say:

It is Thursday morning, May 21, and you will be taking either the AP Calculus AB Exam or the AP Calculus BC Exam.

In a moment, you will open the packet that contains your exam materials.

By opening this packet, you agree to all of the AP Program’s policies and procedures outlined in the 2014-15 Bulletin for AP Students and Parents. Please check to make sure you have the correct exam: Calculus AB or Calculus BC. Raise your hand if you do not have the correct exam. . . .

You may now remove the shrinkwrap from your exam packet and take out the Section I booklet, but do not open the booklet or the shrinkwrapped Section II materials. Put the white seals aside. . . .
Carefully remove the AP Exam label found near the top left of your exam booklet cover. Now place it on page 1 of your answer sheet on the light blue box near the top right-hand corner that reads “AP Exam Label.”

If students accidentally place the exam label in the space for the number label or vice versa, advise them to leave the labels in place. They should not try to remove the label; their exam will be processed correctly.

Read the statements on the front cover of Section I and look up when you have finished. . . .

Sign your name and write today’s date. Look up when you have finished. . . .

Now print your full legal name where indicated. Are there any questions? . . .

Turn to the back cover and read it completely. Look up when you have finished. . . .

Are there any questions? . . .

You will now take the multiple-choice portion of the exam. You should have in front of you the multiple-choice booklet and your answer sheet. You may never discuss these specific multiple-choice questions at any time in any form with anyone, including your teacher and other students. If you disclose these questions through any means, your AP Exam score will be canceled.

You must complete the answer sheet using a No. 2 pencil only. Mark all of your responses beginning on page 2 of your answer sheet, one response per question. Completely fill in the circles. If you need to erase, do so carefully and completely. No credit will be given for anything written in the exam booklet. Scratch paper is not allowed, but you may use the margins or any blank space in the exam booklet for scratch work.

Section I is divided into two parts. Each part is timed separately, and you may work on each part only during the time allotted for it. Calculators are not allowed in Part A. Please put your calculators under your chair. Are there any questions? . . .

You have 55 minutes for Part A. Part A questions are numbered 1 through 28. Mark your responses for these questions on page 2 of your answer sheet. Open your Section I booklet and begin.

Note Start Time here _________. Note Stop Time here _________. Check that students are marking their answers in pencil on page 2 of their answer sheets and that they are not looking beyond Part A. The line of A’s at the top of each page will assist you in monitoring students’ work. After 45 minutes, say:

There are 10 minutes remaining.

After 10 minutes, say:

Stop working on Part A and turn to page 22 in your Section I booklet. . . .

On that page, you should see an area marked “PLACE SEAL HERE.” Making sure all of your other exam materials, including your answer sheet, are out of the way, take one of your seals and press it on that area and then fold
the seal over the open edge to the front cover. Be sure you don’t seal the Part B section of the booklet or let the seal touch anything except the marked areas.

After all students have sealed Part A, say:

Graphing calculators are required for Part B. You may get your calculators from under your chair and place them on your desk. Part B questions are numbered 76 through 92. Fold your answer sheet so only page 3 is showing and mark your responses for these questions on that page. You have 50 minutes for Part B. You may begin.

Note Start Time here __________. Note Stop Time here __________. Check that students have sealed their booklets properly and are now working on Part B. The large B’s in an alternating shaded pattern at the top of each page will assist you in monitoring their work. Proctors should make sure that students are using their calculators appropriately. Proctors should also make sure Hewlett-Packard calculators’ infrared ports are not facing each other. After 40 minutes, say:

There are 10 minutes remaining.

After 10 minutes, say:

Stop working and turn to page 38. You have 3 minutes to answer Questions 93–96. These are survey questions and will not affect your score. You may not go back to work on any of the exam questions.

Give students approximately 3 minutes to answer the survey questions. Then say:

Close your booklet and put your answer sheet on your desk, face up. Make sure you have your AP number label and an AP Exam label on page 1 of your answer sheet. Sit quietly while I collect your answer sheets.

Collect an answer sheet from each student. Check that each answer sheet has an AP number label and an AP Exam label. After all answer sheets have been collected, say:

Now you must seal your Section I booklet. Remove the remaining white seals from the backing and press one on each area of your exam booklet cover marked “PLACE SEAL HERE.” Fold each seal over the back cover. When you have finished, place the booklet on your desk, face up. I will now collect your Section I booklet.

Collect a Section I booklet from each student. Check that each student has signed the front cover of the sealed Section I booklet.

There is a 10-minute break between Sections I and II. When all Section I materials have been collected and accounted for and you are ready for the break, say:

Please listen carefully to these instructions before we take a 10-minute break. All items you placed under your chair at the beginning of this exam must stay there, and you are not permitted to open or access them in any way. Leave your shrinkwrapped Section II packet on top of your desk during the break. You are not allowed to consult teachers, other students, or textbooks during the break. You may not make phone calls, send text messages, use your calculators, check email, use a social networking site, or access any electronic or communication device. Remember, you may never discuss the
multiple-choice questions at any time in any form with anyone, including your teacher and other students. If you disclose these questions through any means, your AP Exam score will be canceled. Are there any questions? . . .

You may begin your break. Testing will resume at _______.

SECTION II: Free Response

After the break, say:

May I have everyone’s attention? Place your Student Pack on your desk. . . .

You may now remove the shrinkwrap from the Section II packet, but do not open the Section II exam booklet until you are told to do so. . . .

Read the bulleted statements on the front cover of the exam booklet. Look up when you have finished. . . .

Now place an AP number label on the shaded box. If you don’t have any AP number labels, write your AP number in the box. Look up when you have finished. . . .

Read the last statement. . . .

Using your pen, print the first, middle and last initials of your legal name in the boxes and print today’s date where indicated. This constitutes your signature and your agreement to the statements on the front cover. . . .

Turn to the back cover and complete Item 1 under “Important Identification Information.” Print the first two letters of your last name and the first letter of your first name in the boxes. Look up when you have finished. . . .

In Item 2, print your date of birth in the boxes. . . .

In Item 3, write the school code you printed on the front of your Student Pack in the boxes. . . .

Read Item 4. . . .

Are there any questions? . . .

I need to collect the Student Pack from anyone who will be taking another AP Exam. You may keep it only if you are not taking any other AP Exams this year. If you have no other AP Exams to take, place your Student Pack under your chair now. . . .

While Student Packs are being collected, read the information on the back cover of the exam booklet, paying careful attention to the bulleted statements in the instructions. Do not open the exam booklet or break the seals in the exam booklet until you are told to do so. Look up when you have finished. . . .

Collect the Student Packs. Then say:

Are there any questions? . . .
Section II also has two parts that are timed separately. You are responsible for pacing yourself, and may proceed freely from one question to the next within each part. Graphing calculators are required for Part A, so you may keep your calculators on your desk. You must write your answers in the appropriate space in the exam booklet using a No. 2 pencil or a pen with black or dark blue ink. Do not break the seals for Part B at this time. Are there any questions? . . .

You have 30 minutes to answer the questions in Part A. If you need more paper during the exam, raise your hand. At the top of each extra sheet of paper you use, be sure to write only your AP number and the number of the question you are working on. Do not write your name. Open your exam booklet and begin.

Note Start Time here. Note Stop Time here. Check that students are working on Part A only and writing their answers in their exam booklets using pencils or pens with black or dark blue ink. The pages for the Part A questions are marked with large 1s or 2s at the top of each page to assist you in monitoring their work. After 20 minutes, say:

There are 10 minutes remaining in Part A.

After 10 minutes, say:

Stop working on Part A. Calculators are not allowed for Part B. Please put all of your calculators under your chair. . . .

Turn to page 13. You have 1 hour for Part B. During this time you may go back to Part A, but you may not use your calculator. Remember to show your work, and write your answer to each part of each problem in the appropriate space in the exam booklet. Are there any questions? . . .

Using your finger, break open the seals on Part B. Do not peel the seals away from the booklet. You may begin Part B.

Note Start Time here. Note Stop Time here. After 50 minutes, say:

There are 10 minutes remaining in Part B.

After 10 minutes, say:

Stop working and close your exam booklet. Place it on your desk, face up. . . .

If any students used extra paper for the free-response section, have those students staple the extra sheet(s) to the first page corresponding to that question in their exam booklets. Complete an Incident Report and include any exam booklets with extra sheets of paper in an Incident Report return envelope (see page 57 of the AP Coordinator’s Manual for details). Then say:

Remain in your seat, without talking, while the exam materials are collected. . . .

Collect a Section II exam booklet from each student. Check for the following:

- Exam booklet front cover: The student placed an AP number label on the shaded box, and printed his or her initials and today’s date.
- Exam booklet back cover: The student completed the “Important Identification Information” area.
When all exam materials have been collected and accounted for, return to students any electronic devices you may have collected before the start of the exam.

If you are giving the regularly scheduled exam, say:

You may not discuss or share these specific free-response questions with anyone unless they are released on the College Board website in about two days. Your AP Exam score results will be available online in July.

If you are giving the alternate exam for late testing, say:

None of the questions in this exam may ever be discussed or shared in any way at any time. Your AP Exam score results will be available online in July.

If any students completed the AP number card at the beginning of this exam, say:

Please remember to take your AP number card with you. You will need the information on this card to view your scores and order AP score reporting services online.

Then say:

You are now dismissed.

All exam materials must be placed in secure storage until they are returned to the AP Program after your school’s last administration. Before storing materials, check the “School Use Only” section on page 1 of the answer sheet and:

- Fill in the appropriate section number circle in order to access a separate AP Instructional Planning Report (for regularly scheduled exams only) or subject score roster at the class section or teacher level. See “Post-Exam Activities” in the 2014-15 AP Coordinator’s Manual.
- Check your list of students who are eligible for fee reductions and fill in the appropriate circle on their registration answer sheets.

Be sure to give the completed seating chart to the AP Coordinator. Schools must retain seating charts for at least six months (unless the state or district requires that they be retained for a longer period of time). Schools should not return any seating charts in their exam shipments unless they are required as part of an Incident Report.
Student Answer Sheet for the Multiple-Choice Section

Use this section to capture student responses. (Note that the following answer sheet is a sample, and may differ from one used in an actual exam.)
COMPLETE THIS AREA AT EVERY EXAM.

A. SIGNATURE
Sign your legal name as it will appear on your college applications. Date

B. LEGAL NAME
Omit apostrophes, Jr., II.

C. YOUR AP NUMBER

D. EXAM DATE
Month Day

E. EXAM START TIME
AM PM

F. MULTIPLE-CHOICE BOOKLET SERIAL NUMBER

G. ONLINE CODE

H. AP EXAM I AM TAKING USING THIS ANSWER SHEET

I. AREA CODE AND PHONE NUMBER

J. SCHOOL YOU ATTEND

K. DATE OF BIRTH

L. SOCIAL SECURITY NUMBER (Optional)

M. COLLEGE TO RECEIVE YOUR AP SCORE REPORT

N. CURRENT GRADE LEVEL

SCHOOL USE ONLY

Section Number

Fee Reduction Granted

Option 1 Option 2
<table>
<thead>
<tr>
<th>QUESTIONS 1–75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicate your answers to the exam questions in this section (pages 2 and 3). Mark only one response per question for Questions 1 through 120. If a question has only four answer options, do not mark option E. Answers written in the multiple-choice booklet will not be scored.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPLETE MARK EXAMPLES OF INCOMPLETE MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>You must use a No. 2 pencil and marks must be complete. Do not use a mechanical pencil. It is very important that you fill in the entire circle darkly and completely. If you change your response, erase as completely as possible. Incomplete marks or erasures may affect your score.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Questions</th>
<th>Options</th>
<th>Questions</th>
<th>Options</th>
<th>Questions</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–26</td>
<td>A B C D E</td>
<td>26–51</td>
<td>A B C D E</td>
<td>51–75</td>
<td>A B C D E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETS USE ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECTED MEDIA EXAMS</td>
</tr>
<tr>
<td>PT02</td>
</tr>
<tr>
<td>PT03</td>
</tr>
<tr>
<td>PT04</td>
</tr>
</tbody>
</table>

| Do not write in this area |
Q. YOUR MAILING ADDRESS

Use the address abbreviations from your AP Student Pack. Fill in only one circle per column. Indicate a space in your address by leaving a blank box; do not grid that column.

<table>
<thead>
<tr>
<th>STREET ADDRESS (include street number, street name, apartment number, etc.)</th>
<th>QTY</th>
<th>ZIP OR POSTAL CODE</th>
<th>COUNTRY CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A A</td>
<td>A A</td>
<td>A A</td>
<td>A A</td>
</tr>
<tr>
<td>E E</td>
<td>E E</td>
<td>E E</td>
<td>E E</td>
</tr>
<tr>
<td>I I</td>
<td>I I</td>
<td>I I</td>
<td>I I</td>
</tr>
<tr>
<td>M M</td>
<td>M M</td>
<td>M M</td>
<td>M M</td>
</tr>
<tr>
<td>R R</td>
<td>R R</td>
<td>R R</td>
<td>R R</td>
</tr>
<tr>
<td>F F</td>
<td>F F</td>
<td>F F</td>
<td>F F</td>
</tr>
<tr>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
</tr>
<tr>
<td>W W</td>
<td>W W</td>
<td>W W</td>
<td>W W</td>
</tr>
<tr>
<td>U U</td>
<td>U U</td>
<td>U U</td>
<td>U U</td>
</tr>
<tr>
<td>T T</td>
<td>T T</td>
<td>T T</td>
<td>T T</td>
</tr>
<tr>
<td>S S</td>
<td>S S</td>
<td>S S</td>
<td>S S</td>
</tr>
<tr>
<td>P P</td>
<td>P P</td>
<td>P P</td>
<td>P P</td>
</tr>
<tr>
<td>O O</td>
<td>O O</td>
<td>O O</td>
<td>O O</td>
</tr>
<tr>
<td>N N</td>
<td>N N</td>
<td>N N</td>
<td>N N</td>
</tr>
<tr>
<td>L L</td>
<td>L L</td>
<td>L L</td>
<td>L L</td>
</tr>
<tr>
<td>K K</td>
<td>K K</td>
<td>K K</td>
<td>K K</td>
</tr>
<tr>
<td>J J</td>
<td>J J</td>
<td>J J</td>
<td>J J</td>
</tr>
<tr>
<td>I I</td>
<td>I I</td>
<td>I I</td>
<td>I I</td>
</tr>
<tr>
<td>G G</td>
<td>G G</td>
<td>G G</td>
<td>G G</td>
</tr>
<tr>
<td>F F</td>
<td>F F</td>
<td>F F</td>
<td>F F</td>
</tr>
<tr>
<td>D D</td>
<td>D D</td>
<td>D D</td>
<td>D D</td>
</tr>
<tr>
<td>B B</td>
<td>B B</td>
<td>B B</td>
<td>B B</td>
</tr>
<tr>
<td>A A</td>
<td>A A</td>
<td>A A</td>
<td>A A</td>
</tr>
</tbody>
</table>

R. FOR STUDENTS OUTSIDE THE UNITED STATES ONLY

If your address does not fit in the spaces provided in Item Q, fill in as many circles as you can, then fill in the circle in Item R and print the remainder of your address in the spaces provided:

<table>
<thead>
<tr>
<th>Address</th>
<th>City</th>
<th>State or Province</th>
<th>Country</th>
<th>ZIP or Postal Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S. STUDENT IDENTIFIER (Student ID Number)

<table>
<thead>
<tr>
<th>State</th>
<th>City</th>
<th>State or Province</th>
<th>Country</th>
<th>ZIP or Postal Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T. EMAIL ADDRESS

By providing your email address, you are granting the College Board permission to use your email in accordance with the policies in the 2014-15 Bulletin for AP Students and Parents.
Section I: Multiple-Choice Questions

This is the multiple-choice section of the 2015 AP exam. It includes cover material and other administrative instructions to help familiarize students with the mechanics of the exam. (Note that future exams may differ in look from the following content.)
DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO.

Instructions

Section I of this exam contains 45 multiple-choice questions and 4 survey questions. For Part A, fill in only the circles for numbers 1 through 28 on page 2 of the answer sheet. For Part B, fill in only the circles for numbers 76 through 92 on page 3 of the answer sheet. The survey questions are numbers 93 through 96.

Indicate all of your answers to the multiple-choice questions on the answer sheet. No credit will be given for anything written in this exam booklet, but you may use the booklet for notes or scratch work. After you have decided which of the suggested answers is best, completely fill in the corresponding circle on the answer sheet. Give only one answer to each question. If you change an answer, be sure that the previous mark is erased completely. Here is a sample question and answer.

Use your time effectively, working as quickly as you can without losing accuracy. Do not spend too much time on any one question. Go on to other questions and come back to the ones you have not answered if you have time. It is not expected that everyone will know the answers to all of the multiple-choice questions.

Your total score on the multiple-choice section is based only on the number of questions answered correctly. Points are not deducted for incorrect answers or unanswered questions.
A calculator may not be used on this part of the exam.

Directions: Solve each of the following problems, using the available space for scratch work. After examining the form of the choices, decide which is the best of the choices given and fill in the corresponding circle on the answer sheet. No credit will be given for anything written in the exam book. Do not spend too much time on any one problem.

In this exam:

1. Unless otherwise specified, the domain of a function \(f \) is assumed to be the set of all real numbers \(x \) for which \(f(x) \) is a real number.

2. The inverse of a trigonometric function \(f \) may be indicated using the inverse function notation \(f^{-1} \) or with the prefix “arc” (e.g., \(\sin^{-1} x = \arcsin x \)).
1. What is the slope of the line tangent to the graph of \(y = \frac{x^2 - 2}{x^2 + 1} \) when \(x = 1 \)?

 (A) \(-\frac{3}{2} \) \hspace{1cm} (B) \(-\frac{1}{2} \) \hspace{1cm} (C) \(\frac{1}{2} \) \hspace{1cm} (D) 1 \hspace{1cm} (E) \(\frac{3}{2} \)

2. If \(y^2 - 2x^2y = 8 \), then \(\frac{dy}{dx} = \)

 (A) \(\frac{4}{y - 2x} \) \hspace{1cm} (B) \(\frac{2xy}{y - x^2} \) \hspace{1cm} (C) \(\frac{4 + 2xy}{y - x^2} \) \hspace{1cm} (D) \(\frac{2xy}{y + x^2} \) \hspace{1cm} (E) \(\frac{2xy + x^2}{y} \)
3. \[\int x^2 (x^3 + 5)^6 \, dx = \]

(A) \(\frac{1}{3} (x^3 + 5)^6 + C \)

(B) \(\frac{1}{3} x^3 \left(\frac{1}{4} x^4 + 5x \right)^6 + C \)

(C) \(\frac{1}{7} (x^3 + 5)^7 + C \)

(D) \(\frac{3}{7} x^2 (x^3 + 5)^7 + C \)

(E) \(\frac{1}{21} (x^3 + 5)^7 + C \)
4. The values of a continuous function \(f \) for selected values of \(x \) are given in the table above. What is the value of the left Riemann sum approximation to \(\int_{0}^{50} f(x) \, dx \) using the subintervals \([0, 25], [25, 30], \) and \([30, 50]\) ?

(A) 290 (B) 360 (C) 380 (D) 390 (E) 430

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>25</th>
<th>30</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>12</td>
</tr>
</tbody>
</table>

5. Which of the following gives the length of the curve \(y = \sqrt{x} \) over the closed interval \([1,4]\)?

(A) \(\int_{1}^{4} \sqrt{1 + \frac{1}{2\sqrt{x}}} \, dx \)

(B) \(\int_{1}^{4} \sqrt{1 + \frac{1}{2x}} \, dx \)

(C) \(\int_{1}^{4} \sqrt{1 - \frac{1}{4x}} \, dx \)

(D) \(\int_{1}^{4} \sqrt{1 + \frac{1}{4x}} \, dx \)

(E) \(\int_{1}^{4} \sqrt{1 + \frac{1}{4x^2}} \, dx \)
6. \[\int \frac{6}{x^2 + 10x + 16} \, dx = \]

(A) \(-\ln|(x + 8)(x + 2)| + C\)

(B) \(\ln\left|\frac{x + 2}{x + 8}\right| + C\)

(C) \(\ln\left|\frac{x + 8}{x + 2}\right| + C\)

(D) \(6\ln|(x + 8)(x + 2)| + C\)

(E) \(6\ln\left|\frac{2x + 10}{(x + 2)(x + 8)}\right| + C\)

7. If \(f(x) = x^2 - 4\) and \(g\) is a differentiable function of \(x\), what is the derivative of \(f(g(x))\)?

(A) \(2g(x)\) (B) \(2g'(x)\) (C) \(2xg'(x)\) (D) \(2g(x)g'(x)\) (E) \(2g(x) - 4\)
8. A particle moves in the xy-plane with position given by $(x(t), y(t)) = (5 - 2t, t^2 - 3)$ at time t. In which direction is the particle moving as it passes through the point $(3, -2)$?

(A) Up and to the left
(B) Down and to the left
(C) Up and to the right
(D) Down and to the right
(E) Straight up

9. Let $y = f(x)$ be the solution to the differential equation $\frac{dy}{dx} = 2y - x$ with initial condition $f(1) = 2$. What is the approximation for $f(0)$ obtained by using Euler’s method with two steps of equal length starting at $x = 1$?

(A) $-\frac{5}{4}$
(B) -1
(C) $\frac{1}{4}$
(D) $\frac{1}{2}$
(E) $\frac{27}{4}$
10. Which of the following series converges?

(A) \(\sum_{n=1}^{\infty} \frac{3n}{n + 2} \)

(B) \(\sum_{n=1}^{\infty} \frac{3n}{n^2 + 2} \)

(C) \(\sum_{n=1}^{\infty} \frac{3n}{n^2 + 2n} \)

(D) \(\sum_{n=1}^{\infty} \frac{3n^2}{n^3 + 2n} \)

(E) \(\sum_{n=1}^{\infty} \frac{3n^2}{n^4 + 2n} \)
11. \[\int \left(2^t + e^\pi \right) \, dt = \]

(A) \[\frac{2^{t+1}}{t+1} + \frac{e^{\pi+1}}{\pi+1} + C \]

(B) \[\frac{2^t}{\ln 2} + e^{\pi t} + C \]

(C) \[\frac{2^t}{\ln 2} + e^\pi + C \]

(D) \[2^t \ln 2 + \frac{e^{\pi+1}}{\pi+1} + C \]

(E) \[2^t \ln 2 + e^{\pi t} + C \]
12. \[\lim_{x \to 0} \frac{e^x - 1}{x} \] is

(A) \(\infty \) (B) \(e - 1 \) (C) 1 (D) 0 (E) \(e^x \)

13. A population of wolves is modeled by the function \(P \) and grows according to the logistic differential equation \[\frac{dP}{dt} = 5P \left(1 - \frac{P}{5000} \right), \] where \(t \) is the time in years and \(P(0) = 1000 \). Which of the following statements are true?

I. \(\lim_{t \to \infty} P(t) = 5000 \)

II. \(\frac{dP}{dt} \) is positive for \(t > 0 \).

III. \(\frac{d^2P}{dt^2} \) is positive for \(t > 0 \).

(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III
14. The graph of \(y = f(x) \) on the closed interval \([0, 4]\) is shown above. Which of the following could be the graph of \(y = f'(x) \)?

(A) \(\text{Graph A} \)

(B) \(\text{Graph B} \)

(C) \(\text{Graph C} \)

(D) \(\text{Graph D} \)

(E) \(\text{Graph E} \)
15. Which of the following integrals gives the area of the region that is bounded by the graphs of the polar equations \(\theta = 0, \ \theta = \frac{\pi}{4} \), and \(r = \frac{2}{\cos \theta + \sin \theta} \)?

(A) \(\int_{0}^{\pi/4} \frac{1}{\cos \theta + \sin \theta} \, d\theta \)

(B) \(\int_{0}^{\pi/4} \frac{2}{\cos \theta + \sin \theta} \, d\theta \)

(C) \(\int_{0}^{\pi/4} \frac{2}{(\cos \theta + \sin \theta)^2} \, d\theta \)

(D) \(\int_{0}^{\pi/4} \frac{4}{(\cos \theta + \sin \theta)^2} \, d\theta \)

(E) \(\int_{0}^{\pi/4} \frac{2(\cos \theta - \sin \theta)^2}{(\cos \theta + \sin \theta)^4} \, d\theta \)
16. The sum of the series \[1 + \frac{2^1}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \cdots + \frac{2^n}{n!} + \cdots \] is

(A) \ln 2 \quad (B) e^2 \quad (C) \cos 2 \quad (D) \sin 2 \quad (E) nonexistent

17. If \(x(t) = t^2 + 4 \) and \(y(t) = t^4 + 3 \), for \(t > 0 \), then in terms of \(t \), \(\frac{d^2 y}{dx^2} = \)

(A) \frac{1}{2} \quad (B) 2 \quad (C) 4t \quad (D) 6t^2 \quad (E) 12t^2
18. If \(\frac{dy}{dt} = -10e^{-t/2} \) and \(y(0) = 20 \), what is the value of \(y(6) \)?

(A) \(20e^{-6} \) \qquad (B) \(20e^{-3} \) \qquad (C) \(20e^{-2} \) \qquad (D) \(10e^{-3} \) \qquad (E) \(5e^{-3} \)

19. Let \(f \) be a function with second derivative \(f''(x) = \sqrt{1 + 3x} \). The coefficient of \(x^3 \) in the Taylor series for \(f \) about \(x = 0 \) is

(A) \(\frac{1}{12} \) \qquad (B) \(\frac{1}{6} \) \qquad (C) \(\frac{1}{4} \) \qquad (D) \(\frac{1}{2} \) \qquad (E) \(\frac{3}{2} \)
20. What is the radius of convergence for the power series \(\sum_{n=0}^{\infty} \frac{(x - 4)^n}{2 \cdot 3^{n+1}} \)?

(A) \(\frac{1}{3} \)
(B) \(\frac{3}{2} \)
(C) 3
(D) 4
(E) 6

21. \(\int_{0}^{1} \frac{1}{x^p} \, dx \) and \(\int_{1}^{\infty} \frac{1}{x^p} \, dx \) both diverge when \(p = \)

(A) 2
(B) 1
(C) \(\frac{1}{2} \)
(D) 0
(E) -1
22. What are the equations of the horizontal asymptotes of the graph of \(y = \frac{2x}{\sqrt{x^2 - 1}} \) ?

(A) \(y = 0 \) only
(B) \(y = 1 \) only
(C) \(y = 2 \) only
(D) \(y = -2 \) and \(y = 2 \) only
(E) \(y = -1 \) and \(y = 1 \) only

23. If \(F(x) = \int_{1}^{x^2} \sqrt{t} \, dt \) for all real numbers \(x > 0 \), then \(F'(x) = \)

(A) \(-\frac{1}{2x} \)
(B) \(\sqrt{x} \)
(C) \(x \)
(D) \(2x^2 \)
(E) \(\frac{2x^3 - 16}{3} \)
24. Which of the following is the solution to the differential equation \(\frac{dy}{dx} = -2xy \) with the initial condition \(y(1) = 4 \) ?

(A) \(y = e^{x^2} + 4 - e \)

(B) \(y = e^{-x^2} + 4 - \frac{1}{e} \)

(C) \(y = 4e^{x^2} - 1 \)

(D) \(y = 4e^{-x^2} + 1 \)

(E) \(y = e^{-x^2} + 16 \)
25. \[\lim_{h \to 0} \frac{\sin \left(\frac{\pi}{3} + h \right) - \sin \left(\frac{\pi}{3} \right)}{h} \]
is

(A) 0 (B) \(\frac{1}{2} \) (C) 1 (D) \(\frac{\sqrt{3}}{2} \) (E) nonexistent

26. Let \(g \) be the function defined by \[g(x) = \int_{-1}^{x} \frac{t^3 - t^2 - 6t}{\sqrt{t^2 + 7}} \, dt. \] On which of the following intervals is \(g \) decreasing?

(A) \(x \leq -2 \) and \(0 \leq x \leq 3 \)
(B) \(x \leq -2 \) and \(x \geq 3 \)
(C) \(-2 \leq x \leq 0 \) and \(x \geq 3 \)
(D) \(-2 \leq x \leq 3 \)
(E) \(x \leq -1 \)
27. If \(f(x) = \sin x + 2x + 1 \) and \(g \) is the inverse function of \(f \), what is the value of \(g'(1) \) ?

(A) \(\frac{1}{3} \) \hspace{1cm} (B) 1 \hspace{1cm} (C) 3 \hspace{1cm} (D) \frac{1}{2 + \cos 1} \hspace{1cm} (E) \ 2 + \cos 1
28. Let \(f \) be a function that has derivatives of all orders for all real numbers, and let \(P_3(x) \) be the third-degree Taylor polynomial for \(f \) about \(x = 0 \). The Taylor series for \(f \) about \(x = 0 \) converges at \(x = 1 \), and

\[
|f^{(n)}(x)| \leq \frac{n}{n+1} \quad \text{for } 1 \leq n \leq 4 \quad \text{and all values of } x.
\]

Of the following, which is the smallest value of \(k \) for which the Lagrange error bound guarantees that \(|f(1) - P_3(1)| \leq k \)?

(A) \(\frac{4}{5} \)

(B) \(\frac{4}{5} \cdot \frac{1}{4!} \)

(C) \(\frac{4}{5} \cdot \frac{1}{3!} \)

(D) \(\frac{3}{4} \cdot \frac{1}{4!} \)

(E) \(\frac{3}{4} \cdot \frac{1}{3!} \)
PART B STARTS ON PAGE 24.
Directions: Solve each of the following problems, using the available space for scratch work. After examining the form of the choices, decide which is the best of the choices given and fill in the corresponding circle on the answer sheet. No credit will be given for anything written in the exam book. Do not spend too much time on any one problem.

BE SURE YOU ARE USING PAGE 3 OF THE ANSWER SHEET TO RECORD YOUR ANSWERS TO QUESTIONS NUMBERED 76–92.

YOU MAY NOT RETURN TO PAGE 2 OF THE ANSWER SHEET.

In this exam:

(1) The exact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among the choices the number that best approximates the exact numerical value.

(2) Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which $f(x)$ is a real number.

(3) The inverse of a trigonometric function f may be indicated using the inverse function notation f^{-1} or with the prefix “arc” (e.g., $\sin^{-1}x = \arcsin x$).
76. Let g be a function such that $g(-1) = 0$ and $g(2) = 5$. Which of the following conditions guarantees that there is an x, $-1 < x < 2$, for which $g(x) = 3$?

(A) g is defined for all x in $(-1, 2)$.

(B) g is continuous for all x in $[-1, 2]$.

(C) g is increasing on $[-1, 2]$.

(D) There exists an x in $(-1, 2)$ such that $g'(x) = 5$.

(E) $\int_{-1}^{2} g(x) \, dx = 3$
The graphs of the differentiable functions f and g are shown above. If the function p is defined by $p(x) = f(x)g(x)$, which of the following must be true about p', the derivative of p?

(A) $p'(-2) < 0$
(B) $p'(-2) = 0$
(C) $p'(-2) > 0$
(D) $p'(0) < 0$
(E) $p'(0) = 0$
78. The rate at which motor oil is leaking from an automobile is modeled by the function L defined by

$$L(t) = 1 + \sin\left(\frac{t^2}{2}\right) \text{ for } t \geq 0.$$

$L(t)$ is measured in liters per hour, and t is measured in hours. How much oil leaks out of the automobile during the first half hour?

(A) 1.998 liters
(B) 1.247 liters
(C) 0.969 liters
(D) 0.541 liters
(E) 0.531 liters

79. The function f has derivatives of all orders for all real numbers with $f(0) = 3$, $f'(0) = -4$, $f''(0) = 2$, and $f'''(0) = 1$. Let g be the function given by $g(x) = \int_0^x f(t) \, dt$. What is the third-degree Taylor polynomial for g about $x = 0$?

(A) $-4x + 2x^2 + \frac{1}{3}x^3$
(B) $-4x + x^2 + \frac{1}{6}x^3$
(C) $3x - 2x^2 + \frac{1}{3}x^3$
(D) $3x - 2x^2 + \frac{2}{3}x^3$
(E) $3 - 4x + x^2 + \frac{1}{6}x^3$
80. The figure above shows the graph of f', the derivative of a function f, for $0 \leq x \leq 2$. What is the value of x at which the absolute minimum of f occurs?

(A) 0 (B) $\frac{1}{2}$ (C) 1 (D) $\frac{3}{2}$ (E) 2
81. The base of a solid is the region enclosed by the curve \(\frac{x^4}{16} + \frac{y^4}{81} = 1 \) shown in the figure above. For the solid, each cross section perpendicular to the \(x \)-axis is a semicircle. What is the volume of the solid?

(A) 12.356 (B) 15.732 (C) 22.249 (D) 24.712 (E) 49.425
82. If \(f(x) = (x + 2)\sin(\sqrt{x + 2}) \), what is the average value of \(f \) on the closed interval \([0, 6]\)?

(A) 2.220 (B) 3.348 (C) 4.757 (D) 20.090 (E) 28.541

83. The infinite series \(\sum_{k=1}^{\infty} a_k \) has \(n \)th partial sum \(S_n = \frac{n}{3n + 1} \) for \(n \geq 1 \). What is the sum of the series \(\sum_{k=1}^{\infty} a_k \)?

(A) \(\frac{1}{3} \) (B) \(\frac{1}{2} \) (C) 1 (D) \(\frac{3}{2} \) (E) The series diverges.
84. The shaded region in the figure above is bounded by the graph of \(y = \sqrt{\cos\left(\frac{\pi x}{10}\right)} \) and the lines \(x = -7, \ x = 7, \) and \(y = 2. \) What is the area of this region?

(A) 6.372 \hspace{1cm} (B) 7.628 \hspace{1cm} (C) 20.372 \hspace{1cm} (D) 21.634 \hspace{1cm} (E) 24.923

85. Let \(y = f(x) \) define a twice-differentiable function and let \(y = t(x) \) be the line tangent to the graph of \(f \) at \(x = 2. \) If \(t(x) \geq f(x) \) for all real \(x, \) which of the following must be true?

(A) \(f(2) \geq 0 \)

(B) \(f'(2) \geq 0 \)

(C) \(f'(2) \leq 0 \)

(D) \(f''(2) \geq 0 \)

(E) \(f''(2) \leq 0 \)
86. Let \(f \) be a twice-differentiable function with selected values of \(f \) and its derivatives shown in the table above.

What is the value of \(\int_0^1 x f''(x) \, dx \)?

(A) 6 \hspace{1cm} (B) 5 \hspace{1cm} (C) 3 \hspace{1cm} (D) \(-\frac{1}{2}\) \hspace{1cm} (E) \(-1\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(f'(x))</th>
<th>(f''(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-2</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>-1</td>
</tr>
</tbody>
</table>
87. The graph of f', the derivative of the function f, is shown in the figure above. Which of the following statements about f at $x = -2$ is true?

(A) f is not continuous at $x = -2$.
(B) f has an absolute maximum at $x = -2$.
(C) The derivative of f does not exist at $x = -2$.
(D) The graph of f has a point of inflection at $x = -2$.
(E) The graph of f has a vertical tangent line at $x = -2$.

88. The first derivative of the function f is given by $f'(x) = \sin(x^2)$. At which of the following values of x does f have a local minimum?

(A) 2.507 (B) 2.171 (C) 1.772 (D) 1.253 (E) 0
89. The alternating series test can be used to show convergence of which of the following alternating series?

I. \(4 - \frac{1}{9} + 1 - \frac{1}{81} + \frac{1}{4} - \frac{1}{729} + \frac{1}{16} - \cdots + a_n + \cdots \), where \(a_n = \begin{cases} \frac{8}{2^n} & \text{if } n \text{ is odd} \\ -\frac{1}{3^n} & \text{if } n \text{ is even} \end{cases} \)

II. \(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \cdots + a_n + \cdots \), where \(a_n = \frac{(-1)^{n+1}}{n} \)

III. \(\frac{2}{3} - \frac{3}{5} + \frac{4}{7} - \frac{5}{9} + \frac{6}{11} - \frac{7}{13} + \frac{8}{15} - \cdots + a_n + \cdots \), where \(a_n = (-1)^{n+1} \frac{n+1}{2n+1} \)

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

90. The function \(f \) is defined by \(f(x) = 3x - 4\cos(2x + 1) \), and its derivative is \(f'(x) = 3 + 8\sin(2x + 1) \). What are all values of \(x \) that satisfy the conclusion of the Mean Value Theorem applied to \(f \) on the interval \([-1, 2]\)?

(A) \(-0.692\) and \(1.263\)
(B) \(-0.479\) and \(1.049\)
(C) \(0.285\)
(D) \(0.517\)
(E) \(1.578\)
A container has the shape of an open right circular cone, as shown in the figure above. The container has a radius of 4 feet at the top, and its height is 12 feet. If water flows into the container at a constant rate of 6 cubic feet per minute, how fast is the water level rising when the height of the water is 5 feet? (The volume V of a cone with radius r and height h is $V = \frac{1}{3}\pi r^2 h$.)

(A) 0.358 ft/min
(B) 0.688 ft/min
(C) 2.063 ft/min
(D) 8.727 ft/min
(E) 52.360 ft/min
92. The function \(f \) is twice differentiable. Selected values of \(f \) are given in the table above. Which of the following could be the graph of \(f''(x) \), the second derivative of \(f \)?

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
x & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
f(x) & 1 & 3 & 4 & 1 & -2 & 1 \\
\hline
\end{array}
\]
END OF SECTION I

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON PART B ONLY.

DO NOT GO ON TO SECTION II UNTIL YOU ARE TOLD TO DO SO.

__

MAKE SURE YOU HAVE DONE THE FOLLOWING.

• PLACED YOUR AP NUMBER LABEL ON YOUR ANSWER SHEET
• WRITTEN AND GRIDDED YOUR AP NUMBER CORRECTLY ON YOUR ANSWER SHEET
• TAKEN THE AP EXAM LABEL FROM THE FRONT OF THIS BOOKLET AND PLACED IT ON YOUR ANSWER SHEET
Section II: Free-Response Questions

This is the free-response section of the 2015 AP exam.
It includes cover material and other administrative instructions
to help familiarize students with the mechanics of the exam.
(Note that future exams may differ in look from the following content.)
DO NOT OPEN THIS BOOKLET OR BREAK THE SEALS ON PART B UNTIL YOU ARE TOLD TO DO SO.

At a Glance

Total Time
1 hour, 30 minutes
Number of Questions
6
Percent of Total Score
50%
Writing Instrument
Either pencil or pen with black or dark blue ink
Weight
The questions are weighted equally, but the parts of a question are not necessarily given equal weight.

Part A

Number of Questions
2
Time
30 minutes
Electronic Device
Graphing calculator required
Percent of Section II Score
33.3%

Part B

Number of Questions
4
Time
60 minutes
Electronic Device
None allowed
Percent of Section II Score
66.6%

Important Identification Information

PLEASE PRINT WITH PEN:
1. First two letters of your last name
First letter of your first name
2. Date of birth
Month
Day
Year
3. Six-digit school code

4. Unless I check the box below, I grant the College Board the unlimited right to use, reproduce, and publish my free-response materials, both written and oral, for educational research and instructional purposes. My name and the name of my school will not be used in any way in connection with my free-response materials. I understand that I am free to mark “No” with no effect on my score or its reporting.

No, I do not grant the College Board these rights.

Instructions

The questions for Section II are printed in this booklet. Do not break the seals on Part B until you are told to do so. Write your solution to each part of each question in the space provided. Write clearly and legibly. Cross out any errors you make; erased or crossed-out work will not be scored.

Manage your time carefully. During the timed portion for Part A, work only on the questions in Part A. You are permitted to use your calculator to solve an equation, find the derivative of a function at a point, or calculate the value of a definite integral. However, you must clearly indicate the setup of your question, namely the equation, function, or integral you are using. If you use other built-in features or programs, you must show the mathematical steps necessary to produce your results. During the timed portion for Part B, you may continue to work on the questions in Part A without the use of a calculator.

For each part of Section II, you may wish to look over the questions before starting to work on them. It is not expected that everyone will be able to complete all parts of all questions.

- Show all of your work. Clearly label any functions, graphs, tables, or other objects that you use. Your work will be scored on the correctness and completeness of your methods as well as your answers. Answers without supporting work will usually not receive credit. Justifications require that you give mathematical (noncalculator) reasons.

- Your work must be expressed in standard mathematical notation rather than calculator syntax. For example, \(\int_{x=1}^{x=5} x^2 \, dx \) may not be written as fnInt(X^2, X, 1, 5).

- Unless otherwise specified, answers (numeric or algebraic) need not be simplified. If you use decimal approximations in calculations, your work will be scored on accuracy. Unless otherwise specified, your final answers should be accurate to three places after the decimal point.

- Unless otherwise specified, the domain of a function \(f \) is assumed to be the set of all real numbers \(x \) for which \(f(x) \) is a real number.
CALCULUS BC
SECTION II, Part A
Time—30 minutes
Number of problems—2

A graphing calculator is required for these problems.
1. At time \(t = 0 \) minutes, a tank contains 100 liters of water. The piecewise-linear graph above shows the rate \(R(t) \), in liters per minute, at which water is pumped into the tank during a 55-minute period.

(a) Find \(R'(45) \). Using appropriate units, explain the meaning of your answer in the context of this problem.

(b) How many liters of water have been pumped into the tank from time \(t = 0 \) to time \(t = 55 \) minutes? Show the work that leads to your answer.
(c) At time $t = 10$ minutes, water begins draining from the tank at a rate modeled by the function D, where $D(t) = 10e^{(\sin t)/10}$ liters per minute. Water continues to drain at this rate until time $t = 55$ minutes. How many liters of water are in the tank at time $t = 55$ minutes?

(d) Using the functions R and D, determine whether the amount of water in the tank is increasing or decreasing at time $t = 45$ minutes. Justify your answer.
2. The figure above shows the graph of the polar equation \(r = 2 + \sin(4\theta) + \cos(\theta) \) for \(0 \leq \theta \leq \frac{\pi}{2} \). The derivative of \(r \) with respect to \(\theta \) is given by \(r'(\theta) = 4\cos(4\theta) - \sin(\theta) \).

(a) Find the area of the region bounded by the graph of \(r \) and the lines \(\theta = 0 \) and \(\theta = \frac{\pi}{2} \).

(b) Find the area of the region in the first quadrant that is outside the graph of \(r = 2 + \sin(4\theta) + \cos(\theta) \) but inside the graph of the circle of radius 2 centered at the origin.
(c) Find the value of θ in the interval $0 \leq \theta \leq \frac{\pi}{2}$ that corresponds to the point on the curve $r = 2 + \sin(4\theta) + \cos(\theta)$ with greatest distance from the origin. Justify your answer.
END OF PART A OF SECTION II
IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON
PART A ONLY. DO NOT GO ON TO PART B UNTIL YOU ARE TOLD TO DO SO.
CALCULUS BC
SECTION II, Part B
Time—60 minutes
Number of problems—4

No calculator is allowed for these problems.

DO NOT BREAK THE SEALS UNTIL YOU ARE TOLD TO DO SO.
3. Kathleen skates on a straight track. She starts from rest at the starting line at time \(t = 0 \). For \(0 < t \leq 12 \) seconds, Kathleen’s velocity \(k \), measured in feet per second, is differentiable and increasing. Values of \(k(t) \) at various times \(t \) are given in the table above.

(a) Use the data in the table to estimate Kathleen’s acceleration at time \(t = 4 \) seconds. Show the computations that lead to your answer. Indicate units of measure.

(b) Use a right Riemann sum with the four subintervals indicated by the data in the table to approximate \(\int_{0}^{12} k(t) \, dt \). Indicate units of measure. Is this approximation an overestimate or an underestimate for the value of \(\int_{0}^{12} k(t) \, dt \)? Explain your reasoning.
(c) Nathan skates on the same track, starting 5 feet ahead of Kathleen at time $t = 0$. Nathan’s velocity, in feet per second, is given by $n(t) = \frac{150}{t + 3} - 50e^{-t}$. Write, but do not evaluate, an expression involving an integral that gives Nathan’s distance from the starting line at time $t = 12$ seconds.

(d) Write an expression for Nathan’s acceleration in terms of t.
4. In a national park, the population of mountain lions grows over time. At time $t = 0$, where t is measured in years, the population is found to be 20 mountain lions.

(a) One zoologist suggests a population model P that satisfies the differential equation $\frac{dP}{dt} = \frac{1}{4}(220 - P)$.

Use separation of variables to solve this differential equation for P with the initial condition $P(0) = 20$.
(b) A second zoologist suggests a population model Q that satisfies $\frac{dQ}{dt} = \frac{1}{500}Q(220 - Q)$. Find the value of $\frac{dQ}{dt}$ at the time when Q grows most rapidly.

(c) For the population model Q introduced in part (b), use Euler’s method, starting at $t = 0$ with two steps of equal size, to approximate $Q(10)$. Show the computations that lead to your answer.
5. Let R be the region in the first quadrant enclosed by the graphs of $g(x) = \sqrt{x}$ and $h(x) = \frac{x}{3}$, as shown in the figure above.

(a) Find the area of region R.
(b) Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid generated when R is revolved about the horizontal line $y = 4$.

(c) Find the maximum vertical distance between the graph of g and the graph of h between $x = 0$ and $x = 16$. Justify your answer.
6. The Maclaurin series for a function f is given by $\frac{x}{3} + \frac{x^2}{4} + \frac{x^3}{5} + \cdots + \frac{x^n}{n+2} + \cdots$.

(a) Use the ratio test to find the interval of convergence of the Maclaurin series for f.
(b) Let \(g \) be the function given by \(g(x) = f(-2x) \). Find the first three terms and the general term of the Maclaurin series for \(g \).

(c) The first two terms of the Maclaurin series for \(f \) are used to approximate \(f(0.1) \). Given that \(|f'''(x)| \leq 2 \) for \(0 \leq x \leq 0.1 \), use the Lagrange error bound to show that this approximation differs from \(f(0.1) \) by at most \(\frac{1}{3000} \).
STOP

END OF EXAM

THE FOLLOWING INSTRUCTIONS APPLY TO THE COVERS OF THE SECTION II BOOKLET.

• MAKE SURE YOU HAVE COMPLETED THE IDENTIFICATION INFORMATION AS REQUESTED ON THE FRONT AND BACK COVERS OF THE SECTION II BOOKLET.

• CHECK TO SEE THAT YOUR AP NUMBER LABEL APPEARS IN THE BOX ON THE COVER.

• MAKE SURE YOU HAVE USED THE SAME SET OF AP NUMBER LABELS ON ALL AP EXAMS YOU HAVE TAKEN THIS YEAR.
Multiple-Choice Answer Key

The following contains the answers to the multiple-choice questions in this exam.
Answer Key for AP Calculus BC
Practice Exam, Section I

Question 1: E	Question 24: D
Question 2: B	Question 25: B
Question 3: E	Question 26: A
Question 4: A	Question 27: A
Question 5: D	Question 28: B
Question 6: B	Question 76: B
Question 7: D	Question 77: A
Question 8: A	Question 78: D
Question 9: C	Question 79: C
Question 10: E	Question 80: E
Question 11: B	Question 81: E
Question 12: C	Question 82: B
Question 13: C	Question 83: A
Question 14: D	Question 84: C
Question 15: C	Question 85: E
Question 16: B	Question 86: B
Question 17: B	Question 87: D
Question 18: B	Question 88: A
Question 19: C	Question 89: B
Question 20: C	Question 90: B
Question 21: B	Question 91: B
Question 22: D	Question 92: D
Question 23: D	
The following contains the scoring guidelines for the free-response questions in this exam.
At time \(t = 0 \) minutes, a tank contains 100 liters of water. The piecewise-linear graph above shows the rate \(R(t) \), in liters per minute, at which water is pumped into the tank during a 55-minute period.

(a) Find \(R'(45) \). Using appropriate units, explain the meaning of your answer in the context of this problem.

(b) How many liters of water have been pumped into the tank from time \(t = 0 \) to time \(t = 55 \) minutes? Show the work that leads to your answer.

(c) At time \(t = 10 \) minutes, water begins draining from the tank at a rate modeled by the function \(D \), where
\[
D(t) = 10e^{(\sin t)/10}
\]
liters per minute. Water continues to drain at this rate until time \(t = 55 \) minutes. How many liters of water are in the tank at time \(t = 55 \) minutes?

(d) Using the functions \(R \) and \(D \), determine whether the amount of water in the tank is increasing or decreasing at time \(t = 45 \) minutes. Justify your answer.

(a)
\[
R'(45) = \frac{30 - 0}{35 - 55} = -\frac{3}{10}
\]
The rate at which water is being pumped into the tank is decreasing at \(\frac{3}{10} \) liters/min\(^2\) at \(t = 45 \) minutes.

(b)
\[
\int_{0}^{55} R(t) \, dt = 20 \cdot \frac{10 + 30}{2} + 15 \cdot 30 + \frac{1}{2} \cdot 20 \cdot 30
\]
\[
= 400 + 450 + 300 = 1150
\]

(c)
\[
\text{Amt} = 100 + 1150 - \int_{10}^{55} 10e^{(\sin t)/10} \, dt
\]
\[
= 1250 - 450.275371 = 799.725 \text{ (or 799.724)}
\]

(d)
\[
R(45) = 15
\]
\[
D(45) = 10.88815
\]

At time \(t = 45 \) minutes, the rate of water pumped into the tank is greater than the rate of water draining from the tank. Therefore, the amount of water in the tank is increasing at time \(t = 45 \) minutes.
The figure above shows the graph of the polar equation
\[r = 2 + \sin(4\theta) + \cos(\theta) \] for \(0 \leq \theta \leq \frac{\pi}{2} \). The derivative of \(r \) with respect to \(\theta \) is given by \(r'(\theta) = 4\cos(4\theta) - \sin(\theta) \).

(a) Find the area of the region bounded by the graph of \(r \) and the lines \(\theta = 0 \) and \(\theta = \frac{\pi}{2} \).

(b) Find the area of the region in the first quadrant that is outside the graph of \(r = 2 + \sin(4\theta) + \cos(\theta) \) but inside the graph of the circle of radius 2 centered at the origin.

(c) Find the value of \(\theta \) in the interval \(0 \leq \theta \leq \frac{\pi}{2} \) that corresponds to the point on the curve \(r = 2 + \sin(4\theta) + \cos(\theta) \) with greatest distance from the origin. Justify your answer.

\[
\text{(a) Area} = \frac{1}{2} \int_0^{\pi/2} (2 + \sin(4\theta) + \cos(\theta))^2 \, d\theta = 6.194 \text{ (or 6.193)}
\]

\[
\text{(b) } 2 + \sin(4\theta) + \cos(\theta) = 2 \Rightarrow \theta = 0.942478
\]

Let \(c = 0.942478 \)

\[
\text{Area} = \frac{1}{2} \int_0^{\pi/2} \left[2^2 - (2 + \sin(4\theta) + \cos(\theta))^2 \right] \, d\theta = 0.456
\]

\[
\text{(c) } r'(\theta) = 4\cos(4\theta) - \sin(\theta) = 0
\]

\(\Rightarrow \theta = 0.370064, 1.237726 \)

\[
\begin{array}{c|c}
\theta & r(\theta) \\
0 & 3 \\
0.370064 & 3.928208 \\
1.237726 & 1.355256 \\
\pi/2 & 2
\end{array}
\]

\(\theta = 0.370 \) corresponds to the point on the curve with the greatest distance from the origin.
Kathleen skates on a straight track. She starts from rest at the starting line at time $t = 0$. For $0 < t \leq 12$ seconds, Kathleen’s velocity k, measured in feet per second, is differentiable and increasing. Values of $k(t)$ at various times t are given in the table above.

(a) Use the data in the table to estimate Kathleen’s acceleration at time $t = 4$ seconds. Show the computations that lead to your answer. Indicate units of measure.

(b) Use a right Riemann sum with the four subintervals indicated by the data in the table to approximate $\int_0^{12} k(t) \, dt$. Indicate units of measure. Is this approximation an overestimate or an underestimate for the value of $\int_0^{12} k(t) \, dt$? Explain your reasoning.

(c) Nathan skates on the same track, starting 5 feet ahead of Kathleen at time $t = 0$. Nathan’s velocity, in feet per second, is given by $n(t) = \frac{150}{t + 3} - 50e^{-t}$. Write, but do not evaluate, an expression involving an integral that gives Nathan’s distance from the starting line at time $t = 12$ seconds.

(d) Write an expression for Nathan’s acceleration in terms of t.

\[
\begin{align*}
\text{(a)} \quad a(4) &\approx \frac{10 - 5}{5 - 3} = \frac{5}{2} \text{ ft/sec}^2 \\
\text{(b)} \quad \int_0^{12} k(t) \, dt &\approx (5)(3) + (10)(2) + (20)(3) + (24)(4) = 191 \text{ feet} \\
\text{(c)} \quad s(12) &= 5 + \int_0^{12} n(t) \, dt \\
\text{(d)} \quad n'(t) &= (150)(-1)(t + 3)^{-2} - 50e^{-t}(-1) \\
&= -\frac{150}{(t + 3)^2} + 50e^{-t}
\end{align*}
\]
Question 4

In a national park, the population of mountain lions grows over time. At time $t = 0$, where t is measured in years, the population is found to be 20 mountain lions.

(a) One zoologist suggests a population model P that satisfies the differential equation $\frac{dP}{dt} = \frac{1}{4}(220 - P)$. Use separation of variables to solve this differential equation for P with the initial condition $P(0) = 20$.

(b) A second zoologist suggests a population model Q that satisfies $\frac{dQ}{dt} = \frac{1}{500}Q(220 - Q)$. Find the value of $\frac{dQ}{dt}$ at the time when Q grows most rapidly.

(c) For the population model Q introduced in part (b), use Euler’s method, starting at $t = 0$ with two steps of equal size, to approximate $Q(10)$. Show the computations that lead to your answer.

(a) $\frac{dP}{dt} = \frac{1}{4}(220 - P)$
\[
\int \frac{dP}{220 - P} = \int \frac{1}{4} \, dt
\]
\[-\ln|220 - P| = \frac{1}{4}t + C
\]
Because $P(0) = 20$, $P < 220$, so $|220 - P| = 220 - P$.
\[-\ln(220 - 20) = \frac{1}{4}(0) + C \Rightarrow C = -\ln 200
\]
$220 - P = 200e^{-t/4}$
$P = 220 - 200e^{-t/4}$, $t \geq 0$

(b) Q satisfies a logistic differential equation with carrying capacity 220. Q grows most rapidly when $Q = \frac{220}{2} = 110$.
\[
\left. \frac{dQ}{dt} \right|_{Q=110} = 110^2 = 121 = \frac{5}{5}
\]

(c) $Q(0) = 20$
$Q'(0) = \frac{1}{500}(20)(200) = 8$
$Q(5) \approx 20 + (8)(5) = 60$
$Q'(5) \approx \frac{1}{500}(60)(220 - 60) = \frac{96}{5}$
$Q(10) \approx 60 + \left(\frac{96}{5}\right)(5) = 156$

Note: max 2/5 [1-1-0-0-0] if no constant of integration

Note: 0/5 if no separation of variables

2 : \{ 1 : Euler’s method with two steps \}
1 : answer
Let R be the region in the first quadrant enclosed by the graphs of $g(x) = \sqrt{x}$ and $h(x) = \frac{x}{3}$, as shown in the figure above.

(a) Find the area of region R.

(b) Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid generated when R is revolved about the horizontal line $y = 4$.

(c) Find the maximum vertical distance between the graph of g and the graph of h between $x = 0$ and $x = 16$. Justify your answer.

(a) Area $= \int_{0}^{9} (\sqrt{x} - \frac{x}{3}) \, dx = \left[\frac{2}{3}x^{3/2} - \frac{1}{6}x^{2} \right]_{0}^{9}$

$= \frac{2}{3} \cdot 27 - \frac{1}{6} \cdot 81 = \frac{9}{2}$

(b) Volume $= \pi \int_{0}^{9} \left[(4 - \frac{x}{3})^{2} - (4 - \sqrt{x})^{2} \right] \, dx$

(c) Consider the function $D(x) = \sqrt{x} - \frac{x}{3}$.

$D'(x) = \frac{1}{2}x^{-1/2} - \frac{1}{3} = \frac{1}{2\sqrt{x}} - \frac{1}{3}$

$D'(x) = 0 \Rightarrow x = \frac{9}{4}$

<table>
<thead>
<tr>
<th>x</th>
<th>$D(x)$</th>
<th>Distance between graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>$\frac{3}{4}$</td>
<td>$\frac{3}{4}$</td>
</tr>
<tr>
<td>$\frac{9}{4}$</td>
<td>$\frac{4}{3}$</td>
<td>$\frac{4}{3}$</td>
</tr>
<tr>
<td>16</td>
<td>$\frac{3}{4}$</td>
<td>$\frac{4}{3}$</td>
</tr>
</tbody>
</table>

The maximum vertical distance between the graph of g and the graph of h between $x = 0$ and $x = 16$ is $\frac{4}{3}$.
The Maclaurin series for a function f is given by
\[
\frac{x}{3} + \frac{x^2}{4} + \frac{x^3}{5} + \cdots + \frac{x^n}{n+2} + \cdots.
\]

(a) Use the ratio test to find the interval of convergence of the Maclaurin series for f.

(b) Let g be the function given by $g(x) = f(-2x)$. Find the first three terms and the general term of the Maclaurin series for g.

(c) The first two terms of the Maclaurin series for f are used to approximate $f(0.1)$. Given that $|f'''(x)| \leq 2$ for $0 \leq x \leq 0.1$, use the Lagrange error bound to show that this approximation differs from $f(0.1)$ by at most $\frac{1}{3000}$.
The following provides a scoring worksheet and conversion table used for calculating a composite score of the exam.
2015 AP Calculus BC Scoring Worksheet

Section I: Multiple Choice

\[
\text{Number Correct (out of 45)} \times 1.2000 = \text{Weighted Section I Score (Do not round)}
\]

Section II: Free Response

Question 1 \[
\text{(out of 9)} \times 1.0000 = \text{(Do not round)}
\]

Question 2 \[
\text{(out of 9)} \times 1.0000 = \text{(Do not round)}
\]

Question 3 \[
\text{(out of 9)} \times 1.0000 = \text{(Do not round)}
\]

Question 4 \[
\text{(out of 9)} \times 1.0000 = \text{(Do not round)}
\]

Question 5 \[
\text{(out of 9)} \times 1.0000 = \text{(Do not round)}
\]

Question 6 \[
\text{(out of 9)} \times 1.0000 = \text{(Do not round)}
\]

\[
\text{Sum} = \text{Weighted Section II Score (Do not round)}
\]

Composite Score

\[
\text{Weighted Section I Score} + \text{Weighted Section II Score} = \text{Composite Score (Round to nearest whole number)}
\]

AP Score Conversion Chart

<table>
<thead>
<tr>
<th>Composite Score Range</th>
<th>AP Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-108</td>
<td>5</td>
</tr>
<tr>
<td>53-62</td>
<td>4</td>
</tr>
<tr>
<td>42-52</td>
<td>3</td>
</tr>
<tr>
<td>36-41</td>
<td>2</td>
</tr>
<tr>
<td>0-35</td>
<td>1</td>
</tr>
</tbody>
</table>
2014 AP Calculus BC — AB Subscore Scoring Worksheet

Section I: Multiple Choice
Questions (1-4, 7, 11, 14, 18, 22-27, 76-78, 80-82, 84-85, 87-88, 90-92)

\[
\text{Number Correct} \times 1.0000 = \text{Weighted Section I Score (Do not round)}
\]

Section II: Free Response

Question 1

\[
\text{(out of 9)} \times 1.0000 = \text{(Do not round)}
\]

Question 3

\[
\text{(out of 9)} \times 1.0000 = \text{(Do not round)}
\]

Question 5

\[
\text{(out of 9)} \times 1.0000 = \text{(Do not round)}
\]

\[
\text{Sum} = \text{Weighted Section II Score (Do not round)}
\]

Composite Score

\[
\frac{\text{Weighted Section I Score}}{\text{Weighted Section II Score}} = \text{Composite Score (Round to nearest whole number)}
\]

AP Score Conversion Chart

<table>
<thead>
<tr>
<th>Composite Score Range</th>
<th>AP Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>34-54</td>
<td>5</td>
</tr>
<tr>
<td>28-33</td>
<td>4</td>
</tr>
<tr>
<td>22-27</td>
<td>3</td>
</tr>
<tr>
<td>18-21</td>
<td>2</td>
</tr>
<tr>
<td>0-17</td>
<td>1</td>
</tr>
</tbody>
</table>
The College Board

The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 1900, the College Board was created to expand access to higher education. Today, the membership association is made up of over 6,000 of the world’s leading educational institutions and is dedicated to promoting excellence and equity in education. Each year, the College Board helps more than seven million students prepare for a successful transition to college through programs and services in college readiness and college success — including the SAT® and the Advanced Placement Program®. The organization also serves the education community through research and advocacy on behalf of students, educators, and schools. The College Board is committed to the principles of excellence and equity, and that commitment is embodied in all of its programs, services, activities, and concerns.