1.5A Quadratic Equations Solve by Factoring

- Solve quadratic equations by factoring
- Solve quadratic equations by the square root property

LT: Solve quadratic equations by factoring

Definition of a Quadratic Equation

An equation that can be written in the general form: $ax^2 + bx + c = 0$

• The Zero-Product Principle

If the product of two algebraic expressions is zero, then at least one of the factors is equal to zero.

If AB = 0, then A = 0 or B = 0

Example 1: Solving Quadratic Equations by Factoring a. $4x^2 - 2x = 0$ b. $2x^2 + 7x = 4$ $2x^2 + 7x - 4 = 0$ 2x(2x-1) = 0(2x-1)(x+4) = 02x = 0 2x - 1 = 0 $x = 0 \qquad 2x = 1$ 2x - 1 = 0 x + 4 = 0 $x = \frac{1}{2}$ $x = \frac{1}{2}$ x = -4

Your Turn 1: Solving Quadratic Equations by Factoring a. $3x^2 - 9x = 0$ b. $2x^2 + x = 1$ $2x^2 + x - 1 = 0$ 3x(x-3) = 0(2x-1)(x+1) = 0 $3x = 0 \qquad x - 3 = 0$ x = 0 x = 32x - 1 = 0 x + 1 = 0 $x = \frac{1}{2}$ x = -1

LT: Solve quadratic equations by the square root property

• The Square Root Property

If
$$u^2 = d$$
, then $u = \sqrt{d}$ or $u = -\sqrt{d}$

Example 2: Solving Quadratic Equations by the Square Root Property

a.
$$3x^2 - 15 = 0$$

 $3x^2 = 15$
 $x^2 = 5$
 $x = \pm\sqrt{5}$
b. $9x^2 + 25 = 0$
 $9x^2 = -25$
 $x^2 = 5$
 $x^2 = \frac{-25}{9}$
c. $(x - 2)^2 = 6$
 $x - 2 = \pm\sqrt{6}$
 $x = 2 \pm \sqrt{6}$

$$x = \pm \frac{5}{3}i$$

Your Turn 2: Solving Quadratic Equations by the Square Root Property

a. $3x^2 - 21 = 0$	b. $5x^2 + 45 = 0$	c. $(x+5)^2 = 11$
$3x^2 = 21$	$5x^2 = -45$	$x + 5 = \pm \sqrt{11}$
$x^2 = 7$	$x^2 = -9$	$r = -5 \pm \sqrt{11}$
$x = \pm \sqrt{7}$	x = +3i	$\lambda = 5 \pm 11$